

Leveraging Multicomputer Frameworks for Use in Multi-Core Processors
Yael Steinsaltz, Ph.D., Scott Geaghan, Myra Jean Prelle, Ph.D., Brian Bouzas

Mercury Computer Systems, Inc.

ysteinsa@mc.com, sgeaghan@mc.com, mjp@mc.com, bbouzas@mc.com

Abstract1

Power and size limitations are two major roadblocks to

continued speedup of single core microprocessors. To

address these problems, most of the large chip producers

have moved to multi-core processors. Those vary in

architecture from 2 to 4 equivalent processors sharing many

resources in a single die (Intel Xeon, Freescale 8641 and

others) to a master-slave architecture where one processor

manages the computations, and several others are math co-

processors (IBM Cell Broadband Engine™ (BE)

processor). These architectures are in fact, multicomputers

on a single chip.

Mercury Computer Systems has been aggressively

developing software for the IBM Cell processor for more

than a year. There are some architectural features of Cell

that make it challenging to program a single Cell chip with

a standard API such as MPI. This fact pushed us to invent a

new API tailored for architectures like Cell. However, we

did not invent from scratch. We discovered that we could

base our paradigm on a standard presented at multiple past

HPEC conferences – www.data-re.org. We call the new

API Multi-Core Framework (MCF). The purpose of this

paper is to introduce this framework and why we found it

necessary to invent MCF.

This paper makes multiple references to Mercury’s prior

implementation of www.data-re.org, a product named

Parallel Application System (PAS). We borrow some of

the techniques used for interconnectivity of multi-

computers and apply them to these new multi-core

architectures. However, we are not making a product pitch

here – we are instead setting the groundwork for justifying

deviating from established standards at the leading edge of

technology – and potentially setting the basis for new

standards that will evolve in the years that follow.

The framework we are using manages the data flow in a

manager-worker fashion, and is most efficient for master-

slave architecture, but can be implemented in any of these

architectures, as long as one of the cores acts as a manager,

it is worth reminding readers that the more established APIs

will run in those chips as well.

We show, using an intercept receiver example, how

leveraging past techniques enables us to achieve high

efficiency, while doing minimal work when porting legacy

code. Performance results for this application are shown

for PowerPC (PPC using PAS), field programmable gate

array ([FPGA]), manual optimization) and Cell technology-

based hardware implementations.

MCF Features

Mercury’s MCF provides a software Application

Programming Interface (API) that is specifically designed

for image and signal processing applications that are to be

executed on heterogeneous or homogeneous multi-core

architectures. It is based on the same principles that were

used to build the PAS software, which is a commercial

implementation of the data re-organization mechanism

(many to many, N dimensions, see: www.data-re.org).

Computationally demanding applications require a software

development environment that supports high-performance,

ease of use, and efficient processor, memory, and

interconnection resource management. In the design of

MCF, these goals were considered paramount.

MCF consists of a library of functions for managing

concurrent processes and performing distributed

computation. A heterogeneous multi-core architecture like

the Cell BE processor consists of a general-purpose

processor and a collection of math co-processors with their

own small memories. This kind of architecture naturally

lends itself to an environment where the general-purpose

processor manages the small worker processors, which

perform computations and move data. We call this the

Function Offload Engine Model. However, MCF, like PAS,

does not provide a model where the application developer

writes a single program for the manager and tasks are

automatically assigned to workers, although MCF can be a

mechanism to enable that kind of model. It is the

application developer’s responsibility to provide a program

for the manager (the general-purpose processor) and one or

more programs for the tasks the workers (the math co-

processors) must perform.

Data Movement

MCF tile channels provide multi-buffered, strip mining of

N-dimensional data sets between a large main memory

(XDR memory in the Cell BE processor) and the small

worker memories, local store. In a heterogeneous multi-

core architecture, the manager’s main memory is probably

large compared to the workers’ local stores. In order for the

workers to perform their tasks, they need to move data from

the main memory into their own local memories. If we

think of their local memories as caches, then the activity

they need to perform is similar to strip mining from main

memory into a processor’s cache. The MCF tile channels

provide means for the manager program to define now the

strip-mined pieces (i.e. tiles), these are to be assigned to

workers – for example, bands of columns, bands of rows,

bands of planes, round robin, or all tiles to every worker.

More complicated tile assignments are also possible using

functions that are modifying fields in the distribution object

(e.g. tile and/or assignment overlap).

Signal Intercept Receiver Example

The original intercept receiver demo was implemented

entirely with Power PC processors four years ago. It

consists of two main components commonly found in the

front-end of an intercept receiver: a channelizer, and a high-

speed alarm (HSA). The real valued output from an analog-

to-digital converter (ADC) feeds into the channelizer. The

output of the channelizer feeds into the HSA. The HSA is

designed to detect frequency hopping signals. Operation of

the intercept receiver is demonstrated with an MSK

modulated signal hopping at a rate of 250 hops per second.

The hopping signal, called the Future Multi-Band, Multi-

Waveform, Modular, Tactical Radio (FM3TR) waveform,

was developed for the Software Defined Radio (SDR)

Forum.

Figure 1: Application design.

The application is shown in Figure 1. The channelization is

done using 16K real FFT with 75% overlap of the input.

For the sake of simplicity, we use a simple threshold for

each of the channels in the high-speed alarm. Still, the

amount of processing required for the HSA is data

dependent. An environment with many frequency hopping

signals will require more processors than an environment

with only one frequency hopping signal. The FPGA

implementation, conducted a year and a half ago and

presented at HPEC2005, uses the exact same algorithm, at

the same speeds, as does the porting we are now doing onto

the Cell BE processor-based blade.

This example requires the resources of a quarter of a dual

VirtexIIPro70 FPGA board (MCJ6 FCN) and one 500MHz

7410 PowerPC (used for the clustering part of the hop

detection) for an input sample rate of 80Msps. By

comparison, the 500MHz 7410-based demo requires the

resources of 20 PowerPCs (5 MCJ6 boards) for the

channelizer, and 7 PowerPCs (1.75 MCJ6 boards) for the

HSA. Using the Cell BE processor (data flow shown in

Figure 2), a single one-processor blade can perform this

algorithm, maintaining the same processing that was done

in the multicomputer environment. The time estimated to

port the application to the Cell BE processor, translating the

PAS calls to MCF, and keeping the SAL (Scientific

Algorithm Library) calls, is about two weeks, while porting

to the FCN took about eight man months.

Figure 2: Data flow inside the cell BE processor

Summary

We are showing here that using multi-core processors with

a framework that resembles an existing multiprocessor

(distributed memory) one, lets us enjoy the best of all

worlds: condensed processing environment (hardware),

easy porting of legacy code, and the flexibility of general

purpose processors. The resulting implementation achieves

hardware savings comparable to those generated when

porting to an FPGA, with a much easier legacy code porting

effort.

These accomplishments are available because multi-core

hardware, like the Cell technology, supports similar

infrastructure as the multicomputer environment that

preceded it, like PAS -> MCF, and the availability of the

scientific algorithm library.

References

[1] Brian Bouzas, Jon Greene, Michael Pepe, Myra Jean Prelle,

Ph.D., “MCF: Multi-Core Framework for Signal Processing

Applications,” Mercury Computer Systems, May 2005.

[2] Scott Geaghan, “Channel Recombination for Intercept

Receivers,” Mercury Computer Systems, 8/17/2005.

[3] Scott Geaghan, Sarah Leeper, “Intercept Receiver on FCN,”

Mercury Computer Systems, 6/7/2005.

[4] Sarah Leeper, Robert Frisch, Scott Geaghan, Scott Tetreault,

Mike Vinskus, Erich Whitney, “FPGA based signal

acquisition system,” HPEC conference 2005.

[5] Brian Bouzas, Robert Cooper, Jon Greene, Michael Pepe,

Myra Jean Prelle, Ph.D., “MultiCore Framework: API for

Programming Heterogeneous Multicore Processors,” First

Workshop on Software Tools for MultiCore Sytems

(STMCS), March 2006.

manager

thread of

manager

manager

manager

manager

manager

teams perform
data parallel math

Manager
thread of
execution

High speed
Alarm worker

Channelizer

workers

Input data

Channelizer
output

Previous channelizer
output = HSA input

worker

HSA output

Unused processing elements

Unused processing elements

worker worker

worker worker worker

