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Agenda
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• Summary
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Cell BE Processor Architecture

• Cell BE processor boasts nine processors on a single die
1 Power® processor
8 vector processors

• Computational Performance
205 GFLOPS @ 3.2 GHz
410 GOPS @ 3.2 GHZ

• A high-speed data ring connects everything
205 GB/s maximum sustained bandwidth

• High performance chip interfaces
25.6 GB/s XDR main memory bandwidth
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Programming the Cell Processor

• Easiest aspects of programming Cell
Very deterministic SPE performance
Generous ring bandwidth
Standards compliant Power® core. 

• Biggest challenges for software
SPE can directly access only 256KB of local store

• Can be viewed as a large (256KB) L1 cache
• But getting code and data into and out of it is the job of software
• Code and data from main memory must be DMA’ed using the Memory Flow 

Controller (MFC)
• SPE instruction set includes instructions for DMA initiation and synchronization

SPE context switch is expensive
• Must save registers, local store contents, and outstanding DMAs (if any)
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Keys to Performance

• PPE performance
Use the PPE for control code

• SPE performance
Decompose algorithm into chunks that can utilize 256K local store
Use run-to-completion model
Overlap computation with DMA using double or triple buffering
Vectorize inner loop SPE code (4-way SIMD for 32-bit float operations)

• EIB / XDR performance
Pay careful attention to XDR bandwidth utilization
Use 128-byte alignment of data and multiples of 128-byte transfers for 
maximum DMA performance
Exploit SPE-to-SPE ring bandwidth if possible
Generally don’t need to worry about aggregate EIB bandwidth

• Dual Cell blade considerations
Use PPE, XDR and SPEs on same Cell BE chip
Use Linux support for processor affinity, memory affinity (NUMA) and SPE 
affinity
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MultiCore Framework

• An API for programming 
heterogeneous multicores that contain 
explicit non-cached memory hierarchies

• Provides an abstract view of the hardware 
oriented  toward computation of 
multidimensional data sets

• Goals
High performance
Ease of use

• First implementation is for the 
Cell BE processor
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MCF Programming Model

• Function offload engines
Use SPEs as math processors

• Write code for both 
processing elements.

Control code for manager (PPE)
Algorithms for workers (SPEs)

• View PPE & XDR memory 
as traditional 
multicomputer node.

Use favorite middleware to move 
data and coordinate processing 
among nodes

PPE

SPE

PPE

SPE SPE SPE SPE SPE SPE SPE

SPE SPE SPE SPE SPE SPE SPESPE

PPE
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MCF Abstractions

• Function offload model
Worker Teams: Allocate tasks to SPEs
Plug-ins: Dynamically load and unload functions from 

within worker programs
• Data movement

Distribution Objects: Defining how n-dimensional data is 
organized in memory

Tile Channels: Move data between SPEs and main 
memory

Re-org Channels: Move data among SPEs
Multibuffering: Overlap data movement and computation

• Miscellaneous
Barrier and semaphore synchronization
DMA-friendly memory allocator
DMA convenience functions
Performance profiling
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MCF Distribution Objects

One complete data set in main memory

Frame

• Distribution Object parameters:
Number of dimensions
Frame size
Tile size and tile overlap
Array indexing order
Compound data type organization (e.g. split / interleaved)
Partitioning policy across workers, including partition overlap
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MCF Distribution Objects

• Distribution Object parameters:
Number of dimensions
Frame size
Tile size and tile overlap
Array indexing order
Compound data type organization (e.g. split / interleaved)
Partitioning policy across workers, including partition overlap

One complete data set in main memory

Unit of work for an SPE

Tile

Frame
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manager (PPE) 
generates data set and 
injects it into input tile 
channel

input tile channel 
subdivides data set into 
tiles

output tile channel 
automatically puts tiles 
into correct location in 
output data set

when output data set is 
complete, manager is 
notified and extracts 
data set

each worker (SPE) 
extract tiles out of 
input tile channel ...

... computes on 
input tiles to 
produce output 
tiles...

...and inserts 
them into output 
tile channel

manager

worker 1

worker 2

worker 3

input tile channel

output tile channel

MCF Tile Channels
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MCF Manager Program
main(int argc, char **argv) {

mcf_m_net_create();
mcf_m_net_initialize();

mcf_m_net_add_task();
mcf_m_team_run_task();

mcf_m_tile_distribution_create_3d(“in”);
mcf_m_tile_distribution_set_partition_overlap(“in”);
mcf_m_tile_distribution_create_3d(“out”);

mcf_m_tile_channel_create(“in”);
mcf_m_tile_channel_create(“out”);
mcf_m_tile_channel_connect(“in”);
mcf_m_tile_channel_connect(“out”);

mcf_m_tile_channel_get_buffer(“in”);

// fill input data here

mcf_m_tile_channel_put_buffer(“in”);
mcf_m_tile_channel_get_buffer(“out”);

// process output data here
}

Add worker tasks

Specify data 
organization

Create and connect
to tile channels

Get empty source 
buffer

Fill it with data
Send it to workers

Wait for results 
from workers
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MCF Worker Program

mcf_w_main (int n_bytes, void * p_arg_ls) {
mcf_w_tile_channel_create(“in”);
mcf_w_tile_channel_create(“out”);
mcf_w_tile_channel_connect(“in”);
mcf_w_tile_channel_connect(“out”);

while (! mcf_w_tile_channel_is_end_of_channel(“in”)
{

mcf_w_tile_channel_get_buffer(“in”);

mcf_w_tile_channel_get_buffer(“out”);

// Do math here

mcf_w_tile_channel_put_buffer(“in”);

mcf_w_tile_channel_put_buffer(“out”);
}

}

Create and connect
to tile channels

Get full source 
buffer

Put back empty 
source buffer

Put back full
destination buffer

Get empty 
destination bufferDo math and fill 

destination buffer
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MCF Implementation

• Consists of
PPE library
SPE library and tiny executive (12 KB)

• Utilizes Cell Linux “libspe” support
But amortizes expensive system calls
Reduces overhead from milliseconds to microseconds
Provides faster and smaller footprint memory allocation library

• Based on Data Reorg standard 
http://www.data-re.org

• Derived from existing Mercury technologies
PAS data partitioning
DSP product experience with small footprint, non-cached 
architectures

http://www.data-re.org/
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Agenda

• Programmability
Cell architecture and performance 
considerations
MultiCore Framework
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Chip level performance

• Large image filters
• Parallel FFT

SPE performance
• Small FFTs

• Summary
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Large Image Filters

• 15x15    8-bit symmetric filter
• 7x7        16-bit separable filter
• 15x15    16-bit symmetric filter

• Images are 2048 x 1024 8 bit or 16 bit pixels
• Function offload from PPE

Execution time is latency of blocking PPE call
Data starts and ends in XDR
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Image Filter Performance: Latency
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Image Filter Algorithms

• Measured on 3.2 GHz Dual Cell Based Blade

• Cell performance is remarkable since the SPE only 
provides 4-way MACs (multiply-accumulates)

Altivec/VMX provides 8-way 16-bit and 16-way 8-bit MACs

• Conventional processors are penalized by
Cache unpredictability

Cache complexity (area and power consumption)

Register starvation

• It is much easier to achieve near to theoretical peak 
operations per clock on the SPE
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Image Filters: Instruction Set Efficiency
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Parallel 64K FFT

• Parallel implementation of a sequence of  
64K point single precision complex FFTs

• SPE-to-SPE communication is essential to 
achieve optimal performance

Data does not fit in a single SPE’s local store 
But does fit in the sum of all 8 local stores
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64K Single Precision Complex FFT
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64K FFT– Algorithm Overview 

• Utilizes performance of entire Cell chip
Utilize 8 SPEs, EIB ring bandwidth, XDR bandwidth

• All data begins and ends in XDR
• During each FFT computation, SPEs

exchange data in one all-to-all transfer
• Triple buffering in local store

Allows overlapping of SPE computation with transfers 
to/from XDR and SPE-to-SPE transfers
While one FFT computation is underway:

• Results from previous FFT are being DMA’ed back to XDR and 
• Data for next FFT is being DMA’ed from XDR
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64K FFT – Footnotes 

• Measured on 3.0 GHz Cell Accelerator Board and 
scaled up to 3.2 GHz

We report GFLOPS of throughput
• I.e. the time between completions of successive FFTs when performing a stream 

of multiple FFTs

Details in paper presented at GSPx 2005

• We use “normalized” GFLOPS computed as 5 N log (N)
This is what FFTBench uses
Actual executed GFLOPS is lower per FFT due to algorithm 
optimizations

• Comparison with 
Freescale 7448 with optimized Mercury SAL
Intel P4, IBM 970 and AMD Opteron with the fastest algorithm 
reported on public BenchFFT site http://www.fftw.org/benchfft/

http://www.fftw.org/benchfft/
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64K FFT – Footnotes: Local Store Usage

• Our 64K FFT algorithm requires 
approximately 253 Kbytes (out of the 
available 256 Kbytes) of local store in each 
SPE:

Stack size:                8K
Code:    31K
DMA lists (2):            8K
Data buffers (3):    192K
Twiddles:              12K

• Total:                   253K
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Why is Cell so Fast for this Example?

• Between 15 and 30 times faster than 
comparable GPPs for this algorithm

• Huge inter-SPE bandwidth
205 GB/s sustained throughput

• Fast main memory
25.6 GB/s XDR bandwidth

• Predictable DMA latency and throughput
DMA traffic has negligible impact on SPE local store 
bandwidth
Easy to overlap data movement with computation

• High performance, low power SPE cores
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Small FFT Performance

• 256 to 8192 point single precision complex FFTs
SPE local store resident
Mostly L1/L2 resident on GPPs

• Measured on real HW
Theoretical peak is 25.6 GFLOPS per SPE

• Comparison with 
Freescale 7448 with optimized Mercury SAL
Intel P4, IBM 970 and AMD Opteron with the fastest 
algorithm reported on public BenchFFT site 
http://www.fftw.org/benchfft/

http://www.fftw.org/benchfft/
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Small Single Precision Complex FFTs
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Why is the SPE So Fast?

• A single SPE core outperforms general purpose 
cores by up to a factor of 7

Outperforms the highest clocking Pentium single core (3.6 GHz) 
by a factor of up to 3

• Reasons
256KB local store vs. 32KB L1 caches
Local store access time is deterministic and local store 
occupancy is under programmer control

• No reverse engineering or second guessing about the cache replacement 
policy

128 registers, each 128 bits long
• No register starvation when unrolling loops to mask the latency of the 

pipelines

• And remember, there are eight SPEs in Cell
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Summary

• The Cell BE processor can achieve one to 
two orders of magnitude performance 
improvement over current general purpose 
processors

Lean SPE core and explicit memory hierarchy saves 
space and power 
And makes it easier for software to approach 
theoretical peak performance

• The Cell BE architecture is a distributed 
memory multiprocessor on a chip

Prior experience on these architectures translates 
easily to Cell
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