
© 2006 Mercury Computer Systems, Inc.

Performance and Programmability
of the Cell Broadband Engine
Processor

Robert Cooper, Brian Bouzas, Luke Cico, Jon Greene,
Maike Geng, Frank Lauginiger, Michael Pepe,
Myra Prelle, George Schmid, Matt Sexton

© 2005 Mercury Computer Systems, Inc.2 © 2006 Mercury Computer Systems

Agenda

• Programmability
Cell architecture and performance considerations
MultiCore Framework

• Performance
Chip level performance
SPE performance

• Summary

© 2005 Mercury Computer Systems, Inc.3 © 2006 Mercury Computer Systems

Cell BE Processor Architecture

• Cell BE processor boasts nine processors on a single die
1 Power® processor
8 vector processors

• Computational Performance
205 GFLOPS @ 3.2 GHz
410 GOPS @ 3.2 GHZ

• A high-speed data ring connects everything
205 GB/s maximum sustained bandwidth

• High performance chip interfaces
25.6 GB/s XDR main memory bandwidth

© 2005 Mercury Computer Systems, Inc.4 © 2006 Mercury Computer Systems

Programming the Cell Processor

• Easiest aspects of programming Cell
Very deterministic SPE performance
Generous ring bandwidth
Standards compliant Power® core.

• Biggest challenges for software
SPE can directly access only 256KB of local store

• Can be viewed as a large (256KB) L1 cache
• But getting code and data into and out of it is the job of software
• Code and data from main memory must be DMA’ed using the Memory Flow

Controller (MFC)
• SPE instruction set includes instructions for DMA initiation and synchronization

SPE context switch is expensive
• Must save registers, local store contents, and outstanding DMAs (if any)

© 2005 Mercury Computer Systems, Inc.5 © 2006 Mercury Computer Systems

Keys to Performance

• PPE performance
Use the PPE for control code

• SPE performance
Decompose algorithm into chunks that can utilize 256K local store
Use run-to-completion model
Overlap computation with DMA using double or triple buffering
Vectorize inner loop SPE code (4-way SIMD for 32-bit float operations)

• EIB / XDR performance
Pay careful attention to XDR bandwidth utilization
Use 128-byte alignment of data and multiples of 128-byte transfers for
maximum DMA performance
Exploit SPE-to-SPE ring bandwidth if possible
Generally don’t need to worry about aggregate EIB bandwidth

• Dual Cell blade considerations
Use PPE, XDR and SPEs on same Cell BE chip
Use Linux support for processor affinity, memory affinity (NUMA) and SPE
affinity

© 2005 Mercury Computer Systems, Inc.6 © 2006 Mercury Computer Systems

Keys to Performance

• PPE performance
Use the PPE for control code

• SPE performance
Decompose algorithm into chunks that can utilize 256K local store
Use run-to-completion model
Overlap computation with DMA using double or triple buffering
Vectorize inner loop SPE code (4-way SIMD for 32-bit float operations)

• EIB / XDR performance
Pay careful attention to XDR bandwidth utilization
Use 128-byte alignment of data and multiples of 128-byte transfers for
maximum DMA performance
Exploit SPE-to-SPE ring bandwidth if possible
Generally don’t need to worry about aggregate EIB bandwidth

• Dual Cell blade considerations
Use PPE, XDR and SPEs on same Cell BE chip
Use Linux support for processor affinity, memory affinity (NUMA) and SPE
affinity

© 2005 Mercury Computer Systems, Inc.7 © 2006 Mercury Computer Systems

MultiCore Framework

• An API for programming
heterogeneous multicores that contain
explicit non-cached memory hierarchies

• Provides an abstract view of the hardware
oriented toward computation of
multidimensional data sets

• Goals
High performance
Ease of use

• First implementation is for the
Cell BE processor

© 2005 Mercury Computer Systems, Inc.8 © 2006 Mercury Computer Systems

MCF Programming Model

• Function offload engines
Use SPEs as math processors

• Write code for both
processing elements.

Control code for manager (PPE)
Algorithms for workers (SPEs)

• View PPE & XDR memory
as traditional
multicomputer node.

Use favorite middleware to move
data and coordinate processing
among nodes

PPE

SPE

PPE

SPE SPE SPE SPE SPE SPE SPE

SPE SPE SPE SPE SPE SPE SPESPE

PPE

© 2005 Mercury Computer Systems, Inc.9 © 2006 Mercury Computer Systems

MCF Abstractions

• Function offload model
Worker Teams: Allocate tasks to SPEs
Plug-ins: Dynamically load and unload functions from

within worker programs
• Data movement

Distribution Objects: Defining how n-dimensional data is
organized in memory

Tile Channels: Move data between SPEs and main
memory

Re-org Channels: Move data among SPEs
Multibuffering: Overlap data movement and computation

• Miscellaneous
Barrier and semaphore synchronization
DMA-friendly memory allocator
DMA convenience functions
Performance profiling

© 2005 Mercury Computer Systems, Inc.10 © 2006 Mercury Computer Systems

MCF Abstractions

• Function offload model
Worker Teams: Allocate tasks to SPEs
Plug-ins: Dynamically load and unload functions from

within worker programs
• Data movement

Distribution Objects: Defining how n-dimensional data is
organized in memory

Tile Channels: Move data between SPE and main
memory

Re-org Channels: Move data among SPEs
Multibuffering: Overlap data movement and computation

• Miscellaneous
Barrier and semaphore synchronization
DMA-friendly memory allocator
DMA convenience functions
Performance profiling

© 2005 Mercury Computer Systems, Inc.11 © 2006 Mercury Computer Systems

MCF Distribution Objects

One complete data set in main memory

Frame

• Distribution Object parameters:
Number of dimensions
Frame size
Tile size and tile overlap
Array indexing order
Compound data type organization (e.g. split / interleaved)
Partitioning policy across workers, including partition overlap

© 2005 Mercury Computer Systems, Inc.12 © 2006 Mercury Computer Systems

MCF Distribution Objects

• Distribution Object parameters:
Number of dimensions
Frame size
Tile size and tile overlap
Array indexing order
Compound data type organization (e.g. split / interleaved)
Partitioning policy across workers, including partition overlap

One complete data set in main memory

Unit of work for an SPE

Tile

Frame

© 2005 Mercury Computer Systems, Inc.13 © 2006 Mercury Computer Systems

manager (PPE)
generates data set and
injects it into input tile
channel

input tile channel
subdivides data set into
tiles

output tile channel
automatically puts tiles
into correct location in
output data set

when output data set is
complete, manager is
notified and extracts
data set

each worker (SPE)
extract tiles out of
input tile channel ...

... computes on
input tiles to
produce output
tiles...

...and inserts
them into output
tile channel

manager

worker 1

worker 2

worker 3

input tile channel

output tile channel

MCF Tile Channels

© 2005 Mercury Computer Systems, Inc.14 © 2006 Mercury Computer Systems

MCF Manager Program
main(int argc, char **argv) {

mcf_m_net_create();
mcf_m_net_initialize();

mcf_m_net_add_task();
mcf_m_team_run_task();

mcf_m_tile_distribution_create_3d(“in”);
mcf_m_tile_distribution_set_partition_overlap(“in”);
mcf_m_tile_distribution_create_3d(“out”);

mcf_m_tile_channel_create(“in”);
mcf_m_tile_channel_create(“out”);
mcf_m_tile_channel_connect(“in”);
mcf_m_tile_channel_connect(“out”);

mcf_m_tile_channel_get_buffer(“in”);

// fill input data here

mcf_m_tile_channel_put_buffer(“in”);
mcf_m_tile_channel_get_buffer(“out”);

// process output data here
}

Add worker tasks

Specify data
organization

Create and connect
to tile channels

Get empty source
buffer

Fill it with data
Send it to workers

Wait for results
from workers

© 2005 Mercury Computer Systems, Inc.15 © 2006 Mercury Computer Systems

MCF Worker Program

mcf_w_main (int n_bytes, void * p_arg_ls) {
mcf_w_tile_channel_create(“in”);
mcf_w_tile_channel_create(“out”);
mcf_w_tile_channel_connect(“in”);
mcf_w_tile_channel_connect(“out”);

while (! mcf_w_tile_channel_is_end_of_channel(“in”)
{

mcf_w_tile_channel_get_buffer(“in”);

mcf_w_tile_channel_get_buffer(“out”);

// Do math here

mcf_w_tile_channel_put_buffer(“in”);

mcf_w_tile_channel_put_buffer(“out”);
}

}

Create and connect
to tile channels

Get full source
buffer

Put back empty
source buffer

Put back full
destination buffer

Get empty
destination bufferDo math and fill

destination buffer

© 2005 Mercury Computer Systems, Inc.16 © 2006 Mercury Computer Systems

MCF Implementation

• Consists of
PPE library
SPE library and tiny executive (12 KB)

• Utilizes Cell Linux “libspe” support
But amortizes expensive system calls
Reduces overhead from milliseconds to microseconds
Provides faster and smaller footprint memory allocation library

• Based on Data Reorg standard
http://www.data-re.org

• Derived from existing Mercury technologies
PAS data partitioning
DSP product experience with small footprint, non-cached
architectures

http://www.data-re.org/

© 2005 Mercury Computer Systems, Inc.17 © 2006 Mercury Computer Systems

Agenda

• Programmability
Cell architecture and performance
considerations
MultiCore Framework

• Performance
Chip level performance

• Large image filters
• Parallel FFT

SPE performance
• Small FFTs

• Summary

© 2005 Mercury Computer Systems, Inc.18 © 2006 Mercury Computer Systems

Large Image Filters

• 15x15 8-bit symmetric filter
• 7x7 16-bit separable filter
• 15x15 16-bit symmetric filter

• Images are 2048 x 1024 8 bit or 16 bit pixels
• Function offload from PPE

Execution time is latency of blocking PPE call
Data starts and ends in XDR

© 2005 Mercury Computer Systems, Inc.19 © 2006 Mercury Computer Systems

Image Filter Performance: Latency

0

500

1000

1500

2000

2500

3000

O
ut

pu
t p

oi
nt

s
/ u

se
c

Cell BE (8 SPEs) @ 3.2GHz 1048 2566 1043
Freescale 7445 @ 1GHz 76 93 41

15x15 8 bit
symmetric filter

7x7 16 bit separable
filter

15x15 16 bit
symmetric filter

© 2005 Mercury Computer Systems, Inc.20 © 2006 Mercury Computer Systems

Image Filter Algorithms

• Measured on 3.2 GHz Dual Cell Based Blade

• Cell performance is remarkable since the SPE only
provides 4-way MACs (multiply-accumulates)

Altivec/VMX provides 8-way 16-bit and 16-way 8-bit MACs

• Conventional processors are penalized by
Cache unpredictability

Cache complexity (area and power consumption)

Register starvation

• It is much easier to achieve near to theoretical peak
operations per clock on the SPE

© 2005 Mercury Computer Systems, Inc.21 © 2006 Mercury Computer Systems

Image Filters: Instruction Set Efficiency

0

5

10

15

20

25

30

C
yc

le
s

pe
r P

oi
nt

Single SPE @ 3.2GHz 24 10 25
Freescale 7445 @ 1GHz 13 11 24

15x15 8 bit
symmetric filter

7x7 16 bit separable
filter

15x15 16 bit
symmetric filter

© 2005 Mercury Computer Systems, Inc.22 © 2006 Mercury Computer Systems

Parallel 64K FFT

• Parallel implementation of a sequence of
64K point single precision complex FFTs

• SPE-to-SPE communication is essential to
achieve optimal performance

Data does not fit in a single SPE’s local store
But does fit in the sum of all 8 local stores

© 2005 Mercury Computer Systems, Inc.23 © 2006 Mercury Computer Systems

64K Single Precision Complex FFT

90.80

6.07
3.15 3.04 3.03

0

10

20

30

40

50

60

70

80

90

100

G
FL

O
PS

Cell BE 3.2 GHz
Mercury SAL

Pentium 4 Xeon 3.6 GHz 2 MB L2
Intel IPPS

IBM 970 (G5) 2 GHz MacOS
FFTW3

Opteron Model 275 32bit 2.4GHz
Intel MKL

FreeScale7448 975MHz
Mercury SAL

Cell Xeon 970 Opteron 7448

64K FFT Performance

© 2005 Mercury Computer Systems, Inc.24 © 2006 Mercury Computer Systems

64K FFT– Algorithm Overview

• Utilizes performance of entire Cell chip
Utilize 8 SPEs, EIB ring bandwidth, XDR bandwidth

• All data begins and ends in XDR
• During each FFT computation, SPEs

exchange data in one all-to-all transfer
• Triple buffering in local store

Allows overlapping of SPE computation with transfers
to/from XDR and SPE-to-SPE transfers
While one FFT computation is underway:

• Results from previous FFT are being DMA’ed back to XDR and
• Data for next FFT is being DMA’ed from XDR

© 2005 Mercury Computer Systems, Inc.25 © 2006 Mercury Computer Systems

64K FFT – Footnotes

• Measured on 3.0 GHz Cell Accelerator Board and
scaled up to 3.2 GHz

We report GFLOPS of throughput
• I.e. the time between completions of successive FFTs when performing a stream

of multiple FFTs

Details in paper presented at GSPx 2005

• We use “normalized” GFLOPS computed as 5 N log (N)
This is what FFTBench uses
Actual executed GFLOPS is lower per FFT due to algorithm
optimizations

• Comparison with
Freescale 7448 with optimized Mercury SAL
Intel P4, IBM 970 and AMD Opteron with the fastest algorithm
reported on public BenchFFT site http://www.fftw.org/benchfft/

http://www.fftw.org/benchfft/

© 2005 Mercury Computer Systems, Inc.26 © 2006 Mercury Computer Systems

64K FFT – Footnotes: Local Store Usage

• Our 64K FFT algorithm requires
approximately 253 Kbytes (out of the
available 256 Kbytes) of local store in each
SPE:

Stack size: 8K
Code: 31K
DMA lists (2): 8K
Data buffers (3): 192K
Twiddles: 12K

• Total: 253K

© 2005 Mercury Computer Systems, Inc.27 © 2006 Mercury Computer Systems

Why is Cell so Fast for this Example?

• Between 15 and 30 times faster than
comparable GPPs for this algorithm

• Huge inter-SPE bandwidth
205 GB/s sustained throughput

• Fast main memory
25.6 GB/s XDR bandwidth

• Predictable DMA latency and throughput
DMA traffic has negligible impact on SPE local store
bandwidth
Easy to overlap data movement with computation

• High performance, low power SPE cores

© 2005 Mercury Computer Systems, Inc.28 © 2006 Mercury Computer Systems

Small FFT Performance

• 256 to 8192 point single precision complex FFTs
SPE local store resident
Mostly L1/L2 resident on GPPs

• Measured on real HW
Theoretical peak is 25.6 GFLOPS per SPE

• Comparison with
Freescale 7448 with optimized Mercury SAL
Intel P4, IBM 970 and AMD Opteron with the fastest
algorithm reported on public BenchFFT site
http://www.fftw.org/benchfft/

http://www.fftw.org/benchfft/

© 2005 Mercury Computer Systems, Inc.29 © 2006 Mercury Computer Systems

Small Single Precision Complex FFTs

0

5

10

15

20

25

FFT Size

Ef
fe

ct
iv

e
G

FL
O

PS

Cell Single SPE 3.2GHz
Mercury SAL

19.29 21.34 22.21 21.61 22.15

Xeon em64T 3.6GHz
Intel IPPS / FFTW3

8.68 8.01 7.18 6.53 6.66

PPC 970 G5 MacOS 2GHz
FFTW3 / VDSP

9.17 9.69 8.75 8.09 6.23

Opteron 275 32bit mode 2.4GHz
FFTW3

4.77 4.82 4.82 4.55 4.05

Freescale 7448 1.075GHz
Mercury SAL

4.63 5.41 5.44 3.58 3.19

256 1024 2048 4096 8192

Single SPE performance comparison

© 2005 Mercury Computer Systems, Inc.30 © 2006 Mercury Computer Systems

Why is the SPE So Fast?

• A single SPE core outperforms general purpose
cores by up to a factor of 7

Outperforms the highest clocking Pentium single core (3.6 GHz)
by a factor of up to 3

• Reasons
256KB local store vs. 32KB L1 caches
Local store access time is deterministic and local store
occupancy is under programmer control

• No reverse engineering or second guessing about the cache replacement
policy

128 registers, each 128 bits long
• No register starvation when unrolling loops to mask the latency of the

pipelines

• And remember, there are eight SPEs in Cell

© 2005 Mercury Computer Systems, Inc.31 © 2006 Mercury Computer Systems

Summary

• The Cell BE processor can achieve one to
two orders of magnitude performance
improvement over current general purpose
processors

Lean SPE core and explicit memory hierarchy saves
space and power
And makes it easier for software to approach
theoretical peak performance

• The Cell BE architecture is a distributed
memory multiprocessor on a chip

Prior experience on these architectures translates
easily to Cell

	Performance and Programmability of the Cell Broadband Engine Processor
	Agenda
	Cell BE Processor Architecture
	Programming the Cell Processor
	Keys to Performance
	Keys to Performance
	MultiCore Framework
	MCF Programming Model
	MCF Abstractions
	MCF Abstractions
	MCF Distribution Objects
	MCF Distribution Objects
	MCF Tile Channels
	MCF Manager Program
	MCF Worker Program
	MCF Implementation
	Agenda
	Large Image Filters
	Image Filter Performance: Latency
	Image Filter Algorithms
	Image Filters: Instruction Set Efficiency
	Parallel 64K FFT
	64K FFT Performance
	64K FFT– Algorithm Overview
	64K FFT – Footnotes
	64K FFT – Footnotes: Local Store Usage
	Why is Cell so Fast for this Example?
	Small FFT Performance
	Small Single Precision Complex FFTs
	Why is the SPE So Fast?
	Summary

