
Data Reorganization Interface (DRI): Past Perspective, Future Vision, New
Results, and Increased Availability

Kenneth C. Cain Jr.
Mercury Computer Systems, Inc.

kcain@mc.com

Introduction
This presentation will offer – from a standards developer
and software/systems vendor perspective – an overall
vision and direction for the standard Data Reorganization
Interface (DRI)1 that is focused on increased adoption for
DRI and its overall methodology. New results obtained
with the Mercury DRI/PAS (Parallel Acceleration System)
middleware that directly contributes to this direction will
be reported. The results include new free-of-charge
DRI/PAS evaluation software for Linux clusters,
performance measurements and comparisons obtained with
DRI/PAS over InfiniBand, and interfaces facilitating
application development with both DRI and the standard
Message Passing Interface (MPI).

Figure 1 presents many of the DRI data distribution and
reorganization features in the context of radar signal
processing. A computational stage (performed in a data-
parallel fashion by a set of source processes) is followed
by a data reorganization and a second computational stage
(performed by a set of destination processes). The source
and destination sets may be disjoint (pipeline) or exactly
the same (clique). DRI facilitates application development
by automating both the data distributions in each stage and
the parallel communications for the data transformation
between stages.

Figure 1. DRI applied to radar signal processing.

The unpartitioned radar data cube (Nr range samples × Np
pulses × Nc channels) is represented in DRI as the Global
Data Object (GDO) whose parameters must be the same in
both stages. The source processes (consisting of Kr × 1 ×
Kc members) request that the range samples and channels
dimensions be partitioned into Kr and Kc blocks
respectively. The destination processes (consisting of 1 ×
Kp × 1 members) request that the pulses dimension be
partitioned into Kp blocks. DRI accepts these high-level
parameters, then calculates and maintains the mapping of

each data element onto a specific processor in the
multicomputer. DRI also provides a multi-point
communication channel between the source and
destination processes. DRI channels calculate the set of
point-to-point communications required to complete the
global data transformation. The application can perform
the entire transformation by issuing a single DRI function
call, offering a very high degree of programming
productivity. Multi-buffering is also provided to
simultaneously enable incoming delivery of the next
dataset, processing of the current dataset, and outgoing
delivery of the previous dataset.

DRI Direction and Vision
Looking back, DRI was ratified in 2002 by a group
consisting of embedded system vendors, software vendors,
and government research and acquisition command
organizations. It has been the topic of several HPEC
workshop presentations2, including case studies in which
DRI was applied to realistic military signal processing
applications3,4. Its API and extensions have been
incorporated into the Mercury Computer Systems’ PAS
middleware product. Within PAS, its DRI foundation has
been extended to support system integration requirements
such as communication between embedded compute nodes
and run-time hosts, I/O devices, and field programmable
gate array (FPGA) compute nodes. Because of these very
practical results, the work of the Data Reorganization
Forum can be considered a successful development
undertaken by the HPEC community during the first 10
years of the workshop.

Currently, additional developments are needed to achieve
wider adoption of DRI:

• A freely available reference implementation to foster
DRI-based prototyping of applications and library
implementations with low or no cost.

• Inter-operation with or inclusion into existing MPI
implementations. This will allow applications to
incrementally incorporate calls to DRI-based
middleware while simultaneously preserving other
portions of the application already written in MPI. The
recommendation is that HPEC applications can greatly
benefit from a programming environment that
simultaneously provides MPI and DRI.

• Possibly incorporate DRI like interfaces in MPI using
the MPI namespace.

Looking forward, the concepts embodied in DRI will be
refined and applied in HPEC systems into the future,
continuing to fill its (conventional) role between multiple
separate processors, but also now enabling dataflow within

individual (multi-core) processors. For example, DRI data
distribution and multi-buffered channel concepts are being
refined and implemented in Mercury’s programming
environment for the Cell Broadband Engine™ processor.
DRI-based middleware may also serve as a high-
productivity, high-performance transport to be used
transparently within very high-level programming
environments such as parallel VSIPL++5, and graphical
development environments.

Results
Mercury has ported its DRI/PAS middleware to clusters of
Linux-based x86, x86_64, and ppc64 blades
interconnected with Ethernet and InfiniBand switched
fabrics. DRI/PAS already targets Mercury’s embedded
multicomputers of Linux- and MCexec-based PowerPC
processors interconnected with RACE++, and RapidIO
switched fabrics. The port from embedded to blade
systems requires a new transport layer implementation
inside DRI/PAS that provides these services:

• Remote Direct Memory Access (RDMA) interface

• Multicomputer services (named memory endpoints to
use with RDMA, semaphores for multi-process level
mutual exclusion and interrupt-driven
synchronization)

For DRI/PAS clusters, there are two transport
implementations: one using only TCP/IP BSD sockets for
interprocess communication, and one that uses both
sockets and RDMA over InfiniBand (RDMA via the user-
level Direct Access Programming Library standard,
uDAPL6,7).

Performance measurements obtained from running
DRI/PAS over uDAPL over InfiniBand will be presented,
including relative comparisons to MPI performance over
InfiniBand verbs (MVAPICH-gen2 package8,9). DRI/PAS
will demonstrate the ability to achieve comparable point-
to-point, single-buffered bandwidth to MVAPICH-gen2
over IB verbs, validating its transport design and
implementation. Additional multi-point dataflow patterns
will be measured and reported, such as scatter, gather, and
many-to-many. A performance comparison to MVAPICH-
gen2 over uDAPL will also be made, providing a more
direct comparison due to the common use of uDAPL.

This presentation will announce the availability of the
TCP/IP-based DRI/PAS software for the HPEC
community to use, free of charge, to evaluate DRI and
related software interfaces. A report of user experiences
with this software will be provided based on an advance
deployment of this software on the HPEC-SI program’s
blade cluster at Georgia Tech Research Institute.

New interfaces are available in DRI/PAS that facilitate a
dual use of MPI and DRI/PAS in the same application. A
set of basic MPI integration definitions will be suggested.
The specific interfaces available in DRI/PAS to meet these
requirements will be detailed. Test applications that
exercise these interfaces will be described, including
successful results achieved running those tests on multiple
systems (Mercury PowerStream 7000, Linux ppc64 cluster

with TCP/IP transport, Linux ppc64 cluster with RDMA
transport) and using multiple MPI implementations
(MVAPICH-gen2 over IB verbs, Verari MPI/Pro for
RapidIO, and MPICH).

References
[1] Data Reorganization Forum, Document for the Data

Reorganization Interface (DRI-1.0) Standard,
http://www.data-re.org/.

[2] K. Cain and A. Skjellum, Data Reorganization Interface,
High Performance Embedded Computing Workshop, 2002.

[3] J. Rudin and K. Cain and L. Cico and E. Luce and T.
O'Connor and M. Prelle, The Scalable Software Interconnect
for Distributed Radar Signal Processing, High Performance
Embedded Computing Workshop, 2005.

[4] B. Sroka, HPEC-SI Demonstration: Common Imagery
Processor – APG-73 Image Formation, High Performance
Embedded Computing Workshop, 2002.

[5] M. Mitchell and J. Oldham, VSIPL++: Intuitive
Programming using C++ Templates, High Performance
Embedded Computing Workshop, 2002.

[6] Direct Access Transport (DAT) Collaborative, uDAPL:
User Direct Access Programming Library,
http://www.datcollaborative.org/udapl.html#spec

[7] Open Fabrics Alliance, http://www.openib.org/

[8] Ohio State University Network-Based Computing
Laboratory. MPI for InfiniBand Project
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

[9] J. Liu and J. Wu and D. Panda, High Performance RDMA-
Based MPI Implementation over InfiniBand, Proceedings of
17th Annual ACM International Conference on
Supercomputing. San Francisco Bay Area. June, 2003.

http://www.data-re.org/
http://www.datcollaborative.org/udapl.html#spec
http://www.openib.org/
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

