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Evolution of Supercomputing
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DARPA HPCS Challenges

Goal:

» Provide a new generation of economically viable high productivity computing
systems for the national security and industrial user community (2010)

Focus on:

® Real (not peak) performance of critical national security applications
® Intelligence/surveillance
® Reconnaissance
® Cryptanalysis
® \Weapons analysis
® Airborne contaminant modeling
® Biotechnology

® Programmability: reduce cost and time of developing applications

® Software portability and system robustness
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Standard Parallel Corresponding Performance
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e Standard architecture produces a “steep” multi-layered memory hierarchy
— Programmer must manage this hierarchy to get good performance

* HPCS technical goal
— Produce a system with a “flatter” memory hierarchy that is easier to program
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HPCS Performance Targets

HPC Challenge Corresponding HPCS Targets
Benchmark Memory Hierarchy (improvement)
*Top500: solves a system

AxXx =Db \

* STREAM: vector operations
A=B+sxC -

- — 2 Petaflops
Instr. Operands (8x)

__ 6.5 Petabyte/s
(40x)

Blocks ™~

*FFT: 1D Fast Fourier Transform .. 0.5 Petaflops

Z = FFT(X) atoney Messanes (200x)
*RandomAccess: random updates = — g o 64,000 GUPS
T(i) = XOR(T(i), r) (2000x)

Disk

* HPCS program has developed a new suite of benchmarks (HPC Challenge)
®* Each benchmark focuses on a different part of the memory hierarchy

* HPCS program performance targets will flatten the memory hierarchy,
improve real application performance, and make programming easier

MIT Lincoln Laboratory
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HPCS Roadmap

» 5vendors in phase 1; 3 vendors in phase 2; 1+ vendors in phase 3
» MIT Lincoln Laboratory leading measurement and evaluation team

Petascale Systems

Full Scale
Development

Validated Procurement
Evaluation Methodology

Advanced Test Evaluation
Design & Framework
Prototypes
Concept New Evaluation
Study ’ . Today Framework
Phase 1 Phase 2 Phase 3
$20M (2002) $170M (2003-2005) (2006-2010)
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HPCS Benchmark Spectrum
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Spectrum of benchmarks provide different views of system
* HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
e Applications drive system issues; set legacy code performance bounds
e Kernels and Compact Apps for deeper analysis of execution and development time
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HPL “Top500” Benchmark

* High Performance Linpack (HPL) solves a system Ax =b
®* Core operation is a LU factorization of a large MxM matrix
®* Results are reported in floating point operations per second (flops)

Parallel Algorithm

Instr. Operands

LU

Blocks Factorization

Messages

. 2D block cyclic distribution
Disk ) .
Is used for load balancing

* Linear system solver (requires all-to-all communication)
e Stresses local matrix multiply performance
* DARPA HPCS goal: 2 Petaflops (8x over current best)

MIT Lincoln Laboratory

Slide-11
HPCS Productivity



STREAM Benchmark

* Performs scalar multiply and add
®* Results are reported in bytes/second

Parallel Algorithm

Instr. Operands

>

Blocks

Messages

X 4+ I

Disk

®* Basic operations on large vectors (requires no communication)
® Stresses local processor to memory bandwidth
* DARPA HPCS goal: 6.5 Petabytes/second (40x over current best)

MIT Lincoln Laboratory
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FFT Benchmark

* 1D Fast Fourier Transforms an N element complex vector
* Typically done as a parallel 2D FFT
®* Results are reported in floating point operations per second (flops)

Parallel Algorithm

Instr. Operands FFT rows —
FFT columns

Blocks

(™

caorner
turn

Messages

Disk

* FFT a large complex vector (requires all-to-all communication)
® Stresses interprocessor communication of large messages
* DARPA HPCS goal: 0.5 Petaflops (200x over current best)

MIT Lincoln Laboratory
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RandomAccess Benchmark

e Randomly updates N element table of unsigned integers
* Each processor generates indices, sends to all other processors, performs XOR
* Results are reported in Giga Updates Per Second (GUPS)

Parallel Algorithm
Table

Instr. Operands

Blocks

Messages

Generate random indices

Disk

e Randomly updates memory (requires all-to-all communication)
® Stresses interprocessor communication of small messages
* DARPA HPCS goal: 64,000 GUPS (2000x over current best)

MIT Lincoln Laboratory
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Example SAR Application
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e FFT, IFFT (corner turn)
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* HPC Challenge benchmarks are similar to pieces of real apps
* Real applications are an average of many different operations
* How do we correlate HPC Challenge with application performance?
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®* Programs can be decomposed into memory reference patterns
e Stride is the distance between memory references
— Programs with small strides have high “Spatial Locality”

®* Reuse is the number of operations performed on each reference
— Programs with large reuse have high “Temporal Locality”

® Can measure in real programs and correlate with HPC Challenge

MIT Lincoln Laboratory
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@ Spatial/Temporal Locality Results

1 —
MetaSim data from Snavely et al (SDSC)
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* HPC Challenge bounds real applications

— Allows us to map between applications and benchmarks
* How do we get HPC Challenge run on the biggest systems?
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® Class 1: Best Performance (4 awards)

— Best performance on a run submitted to the website
HPL
RandomAccess
STREAM
FFT

— The prize will be $500 plus a certificate for each benchmark

® Class 2: Most Productivity
— Most "elegant” implementation of at least two benchmarks
— 50% on performance
— 50% on code elegance, clarity, and size
— The prize will be $1500 plus a certificate for this award

@ * Awards presented at the Supercomputing 2005 conference

® Co-chairs: Jack Dongarra (UTK) and Jeremy Kepner (MIT LL)

an
=

Prizes sponsored by HPCWire

MIT Lincoln Laboratory
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Competitors

CRAY (DOD ERDC)
XT3 4096 CPUs
“Sapphire”

| i | - J.- - _,.f" ‘ . s
SGI (NASA) NEC (HLRS) IBM (DOE LLNL) CRAY (DOE ORNL) DELL (MIT LL)
“Columbia” SX-8 512 CPUs BGI/L 131,072 CPUs X1 1008 CPUs 300 CPUs
10,000 CPUs “Purple” 10,240 CPUs “Jaguar” XT3 5200 CPUs “LLGrid”

® Class 2: 11 Submissions / 5 Finalists
— B. Kuszmaul (MIT CSAIL) Cilk on Sun Ultrasparc
— C. Cascaval (IBM) UPC on Blue Gene/L
— J. Feo (Cray) pragmas on MultiThreaded Architecture (MTA)
— N. Wichmann (CRAY) UPC on X1E
— C. Moler (The Mathworks) Parallel Matlab Prototype on Cray XD1
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J:iY) HPC Challenge Performance Results
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Memory Model / Architecture Programming Languages Studied
Serial CPU C/C++
Fortran
Memory Java
Matlab
Shared cpul lepul epullepuy C{Fortran + OpenMP
Memory [ [ [ [ High Performance Fortran (HPF)
High Speed Interconnect Unified Parallel C (UPC)
Memory Cilk
Memory | | | | Matlab*P
CI|3U CF|>U CF|>U CF|>U oMatlab
M M M M

* HPCS Program is making a significant investment in new
programming languages and programming models

* HPC Challenge Class 2 Award is designed to highlight this work
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* Class 2 Award |
—50% Performance .
—50% Elegance ) 711 O i -

® 30 Codes submitted by
11 teams

* Speedup relative to
serial C on workstation 10

Speedup

_ _ Java, Matlab, “ Al -
* Code size relative to Python, etc. too often

serial C 102

0

10 10

Relative Code Size
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Winner
® Finalist
Submission

Winner
Ref ® Finalist
Submission

Speedup

Speedup

Winner
® Finalist
Submission

Winner
® Finalist
Submission

Relative Code Size

Relative Code Size

®* Results show there are better parallel programming approaches

27 of 30 smaller than C+MPI Ref; 15 smaller than serial
24 of 30 faster than serial; 15 in HPCS quadrant (includes all winners) |ory
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Summary

e HPCS Goals

— Provide a new generation of economically viable high
productivity computing systems for the national security and
industrial user community (2010)

e HPSS Productivity Team goal is to develop an acquisition
guality framework for HPC systems that includes

— Development time
— Execution time

* HPC Challenge is a powerful tool for evaluating system
performance and HPCS goals

— Class 1 results highlights benefits relative to current HPC
systems (e.g. flatter memory hierarchy)

— Class 2 awards demonstrates that there are many “better”
programming approaches than C+MPI
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