

Interactive Supercomputing’s Star-P Platform:

Parallel MATLAB and MPI Homework
Classroom Study on High Level Language Productivity

Alan Edelman
Massachusetts Institute of Technology
and Interactive Sup rcomputing: e
edelman@math.mit.edu

Parry Husbands
Interactive Supercomputing
and Lawrence Berkeley Lab
phusbands@interactivesupercomputing.com

Steve Leibman
Interactive Supercomputing
sleibman@interactivesupercomputing.com

Productivity through High Level Infrastructure
The thesis of this extended abstract is simple. High
productivity comes from high level infrastructures. To
measure this, we introduce a methodology that goes beyond
the tradition of timing software in serial and tuned parallel
modes. We perform a classroom productivity study
involving 29 students who have written a homework
exercise in a low level language (MPI message passing) and
a high level language (Star-P with MATLAB client). Our
conclusions indicate what perhaps should be of little
surprise: 1) the high level language is always far easier on
the students than the low level language. 2) The early
versions of the high level language perform inadequately
compared to the tuned low level language, but later versions
substantially catch up. Asymptotically, the analogy must
hold that message passing is to high level language parallel
programming as assembler is to high level environments
such as MATLAB, Mathematica, Maple, or even Python.

We follow the Kepner method [6] that correctly realizes
that traditional speedup numbers without some discussion
of the human cost of reaching these numbers can fail to
reflect the true human productivity cost of high
performance computing. Traditional data compares low
level message passing with serial computation. With the
benefit of a high level language system in place, in our case
Star-P running with MATLAB client, and with the benefit
of a large data pool: 29 students, each running the same
code ten times on three evolutions of the same platform,
we can methodically demonstrate the productivity gains.
To date we are not aware of any high level system as
extensive and interoperable as Star-P, nor are we aware of
an experiment of this kind performed with this volume of
data.

Star-P Architecture
The Star-P research project begun at MIT in 1998 [1,2,3]
and is commercialized by Interactive Supercomputing,
founded in 2004 (see [4]). Interactive Supercomputing’s
Star-P platform (architecture illustrated below) is designed
to bring the first two author’s dream of faster computing on
larger data sets to the millions of scientists and engineers
who wish to concentrate on their specialties rather than take
the time and expense to learn how to write traditional
parallel programs. In Star-P, MATLAB users insert the
simple characters “*p” to tag large data sizes for data
parallelism. Users identify the task parallelism when
appropriate with a “ppeval” or parallel evaluate call
reminiscent of feval for function evaluation. Their serial

MATLAB code is transformed into parallel MATLAB
code far more readily than traditional approaches

The Star-P 2.3 system appears to the user as a “parallel
MATLAB” but Figure 1 below shows that architecturally
Star-P is a language agnostic platform. In Star-P 2.3, users
can write MATLAB codes and add serial and parallel
extensions.

Fig 1: Architecture of the Star-P Platform

MIT Graduate Class Experimental Data
The first author has been teaching a large cross section of
graduate students at MIT since 1994 about the realities and
myths of high performance computing (see [5]). He is
proud that among his students have been the authors of
FFTW, some of the authors of pMATLAB,[7,8] and of
course many of the students who have worked on and tested
Star-P (a project formerly known as MITMATLAB,
pMATLAB itself, MATLABp, and MATLAB*p) most
particularly the second and third authors.

This course has participated in performance studies as part
of the development time study experiment of the HPEC
program [6]. What has become increasingly clear from
these studies is that a few very talented students who have
the knack, can find ways to improve the performance of
codes, but even the most talented and inclined still expend a
great deal of time.

The students were given a by now standard programming
assignment in parallel computing classes, the two
dimensional Buffon needle problem. A typical parallel
MATLAB solution in Star-P looked like:

 Student Student Student

Star-P 2.3 (May 2006) Star-P Internal Star-P 2.1 (March 2006)

Mean MPI Timing

Methodology: No
user changes to
codes allowed
between runs

Time on 4p (seconds)

Fig 2: The Buffon Needle Problem executed by 29 students in three evolutionary versions of Star-P each executed ten times and compared
with MPI runs written by the same students. The mean MPI timing was 2.8 seconds. We have not here normalized per student but we
should report that a handful of students who worked hard achieved what might be considered the optimum of 1 sec on 4 processors in MPI.
In a boxplot, the blue box ranges from the 25th to 75th percentiles of the ten data points. The red line is at the median. The whisker is the
full extent of the data omitting outliers which are the red plusses. Writing message passing code was widely considered an unpleasant
chore while the insertion of the two characters “*p” hardly seemed to be worthy of an MIT problem set.

function z=Buffon(a,b,l, trials)
r=rand(trials*p,3);
x=a*r(:,1)+l*cos(2*pi*r(:,3));
y=b*r(:,2)+l*sin(2*pi*r(:,3));
inside = (x >= 0) & (y>=0) & (x <= a) & (y <= b);
buffonpi=(2*l*(a+b) - l^2)/ (a*b*(1-
sum(inside)/trials));

 The serial MATLAB code differs from the parallel one
by the “*p” in red above. We ran each code ten times in
three evolutions Star-P. Figure 2 plots the students
timings on 4 processors (ten million trials).

We can only report anecdotal evidence about the human
time for all 29 students, but overwhelmingly the students
preferred adding the two characters “*p” to their code as
compared to writing the MPI code. The mean time was
2.8 seconds on four processors. A handful of the students
who were determined to performance tune their MPI code
reached times close to 1 second. Thus the Star-P system
brings users to within 40% of the hand coded optimum.
The Star-P design allows for even this overhead to be
shaved down further in future releases.

To understand scalability, the following times are the
mean run times on the internal version of Star-P. (We
note that the other versions of Star-P indicate similar
scalability characteristics:) Each number is the average of
290 runs, 10 runs for each of 29 student codes.

Processors 1 2 4 8
Avg Seconds 5.7 2.9 1.4 0.7

Our view of this experiment is best illustrated as in the
cartoon in Figure 3 which follows the productivity
methodology introduced by Kepner and colleagues.

Conclusion
High level systems such as Star-P can allow users to write
in high level languages such as MATLAB thereby
providing the look and feel of a “parallel MATLAB.” In
much the same way that productivity has been obtained

from underneath by faster cpu speeds, users of Star-P
need not change codes between releases, and yet obtain
faster execution as the infrastructure continues to squeeze
out the best performance possible.

Development Time

Performance

Serial

Star-P 2.1
Star-P 2.3

Star-P Internal
MPI Typical

MPI Best

0 Small Large

Bad

Best

Fig 3: Kepner diagram illustrating the main point of this study.
Productivity may be thought of as best slope on line to the origin. The
vertical rise in performance of Star-P may be thought of as riding the
technology curve as students expended no additional effort. Typical
methodologies only report MPI vs serial on the vertical axis. The
Kepner methodology provides the means of seeing productivity on a two
dimensional scatter plot.

We thank Lorin Hochstein for his assistance in setting up the classroom studies.
Funding for the studies was generously provided to the first author as part of the
HPEC Productivity Study in the DOE Petascale Application Development
Program. We particularly thank Jeremy Kepner for numerous interesting
conversations and his leadership in the productivity area.

MATLAB is a product of the Mathworks, Inc. This and other trademarks are property of their
respective owners. Use of these marks does not imply endorsement.

References.
[1] R. Choy and A. Edelman, “Parallel MATLAB doing it right,” Proceedings

of the IEEE, Vol.93, No.2, Feb 2005, pages 331-341.
[2] P. Husbands and C. Isbell, “The Parallel Problems Server: A Client-Server

Model for Large Scale Scientific Computation.” Proceedings of the Third
International Conference on Vector and Parallel Processing. Portugal, 1998.

[3] P. Husbands, Interactive Supercomputing, PhD Thesis, Massachusetts
Institute of Technology, Cambridge, 1999.

[4] Interactive Supercomputing: http://www.interactivesupercomputing.com.
[5] A Edelman, MIT Course 18.337: http://beowulf.csail.mit.edu.
[6] J. Kepner, http://www.highproductivity.org
[7] J. Kepner and S. Ahalt, “MatlabMPI,” Journal of Parallel and Distributed

Computing (JPDC), 64(8): 997-1005 (2004).
(http://www.ll.mit.ede/MatlabMPI).

[8] N. Travinin and J. Kepner, pMatlab Parallel Matlab Library IJHPCA 2006.
(http://www.ll.mit.edu/pMatlab).

http://www.interactive/
http://www.highproductivity.org/
http://www.ll.mit.ede/MatlabMPI
http://www.ll.mit.edu/pMatlab

