
Applying Advanced Computing to Improve High-Fidelity
Radar Data Simulations

Christopher Hulbert (cch@isl-inc.com), Jameson Bergin (jsb@isl-inc.com),
Paul Techau (pmt@isl-inc.com)

Information Systems Laboratories, Inc.

Abstract
High-fidelity radar (IQ) data simulations involve
many complex operations, especially in clutter
simulations. This paper describes the
parallelization of Matlab simulation software using
Matlab MPI, its transition to compiled language
functions, and the parallelization and optimization
of supporting libraries. Because of the structure of
the simulation, parallel computation architectures
can reduce simulation time from weeks and days to
hours and in some cases minutes. Timing results
using the AFRL HHPC system are presented.

1. Introduction
High-fidelity radar simulations have proven useful
for analyzing the performance of adaptive radar
systems over relatively short processing intervals on
the order of a few minutes [e.g. 1,2]. Characterizing
system performance over longer time periods (e.g.,
tracking performance), however, requires
significantly more simulated data which can often
take weeks to months to generate on single node
computers. This is not an acceptable time-frame for
efficient analysis and often severely limits the use
of high-fidelity simulations to completely
characterize the performance of a given radar
system. Unfortunately, existing clutter simulations
must sacrifice fidelity to address these longer run
times. An alternative to reducing fidelity is to apply
high performance computing to speed up the high-
fidelity simulations.

The objective of the radar clutter data simulations is
to model the site-specific clutter for a given radar
geometry. A range swath and its ambiguous range
swaths can be divided into a number of clutter
patches of any size. Using these discrete patches we
can define a typical clutter signal model as [3],

∑
=

×∈=
P

p

NM
ppppc Ctαt

1

1)()(uvsx oo ,

where and are the complex scattering
amplitude and space-time steering vector for the

 clutter patch, is a vector that accounts for
range walk and bandwidth effects for an arbitrary
waveform, and is a unit energy modulation
processes that accounts for temporal and spatial
modulation mechanisms respectively. The total
number of simulated clutter patches is

pα pv

thp)(tps

pu

P and the
number of receiver channels and pulses is and N
M , respectively. The operator o is the Hadamard
element-wise vector product.

The equation shows that each term is dependent
only on the parameters of the current clutter patch,
and thus allows for easy parallel implementation.
This also illustrates that the simulation time is
characterized by two main components, the number
of clutter patches and computations for each patch.

ISL has developed the Matlab SCATS and Radar
Simulation toolboxes for this application. Matlab
SCATS is a toolbox for RF signal environment
characterization including: power, Doppler, azimuth
angles, elevation angles, propagation factors, etc.
for each scatterer in a scenario. The radar
simulation toolbox is a general simulation
framework that takes user inputs, analyzes the RF
signal environment using Matlab SCATS, and then
generates the IQ data. All initialization and core
functions are called using Matlab function handles.
This design gives the user complete control over the
simulation and allows easy development and
implementation of new algorithms.

These toolboxes were used extensively under the
recent Defense Advanced Research Projects
Agency’s (DARPA) KASSPER program [4] to
generate high-fidelity radar data to support
advanced signal processing algorithm development.

2. Software Development
ISL’s software development goals are to create a
portable and efficient implementation of a radar
simulation tool. Portability is important as various
platforms and architectures are tested. The efficient
implementation has several components including
parallel implementation and optimization of
libraries used. An added benefit of both a Matlab

mailto:cch@isl-inc.com
mailto:jsb@isl-inc.com

and C implementation is data quality assurance
(verifying both sets of code give the same result).

2. 1 Parallel Matlab Prototype
The radar simulation toolbox uses MatlabMPI to
distribute the cells for each simulation. When a
simulation is complete, the IQ data is combined
using a sum reduction. Further performance
improvements per node in Matlab were desired to
improve simulation time. A desirable approach was
to begin rewriting many of these tools in a compiled
language and use Matlab’s External interface
(MEX) functions as this allows continued
development in the Matlab environment while
optimizing lower-level functions. Fortran and
C/C++ were considered, but because of the cleaner
interface from Matlab to C and ISL’s experience
with C, C was chosen as the target language. To aid
in portable code and easier implementation of
vectorized operations, the Vector, Signal, and
Image Processing Library (http://www.vsipl.org)
was used. The VSIPL API standard is well
supported by many hardware and software vendors.
HPEC-SI has also picked up the program
implementing a C++ and parallel C++ standard
known as vsipl++ and parallel vsipl++. Using the
VSIPL library as a computation base has improved
performance 2-10 times.

The VISPL library initially used was the reference
library distributed on the VSIPL website. Since our
current simulation architectures include consumer
processors such as Intel Pentium/Xeon and AMD
Athlon64/Opteron processors, it was desired to
improve the VSIPL optimization on these
architectures. Optimizations made to the VSIPL
library include using the AMD/Intel Math libraries
as well as introducing OpenMP directives for
threading.

2.2 MPI Parallel Implementation
In the Matlab-independent software, MPI is used.
Implementations on ISL’s cluster use mpich2 – a
freely available MPI-2 standard implementation
from Argonne National Laboratory. On the AFRL
cluster, mpich1 was used. Additional tests will
likely also use the AFRL Myrinet connection.

3. Performance Results
Under a contract with the Air Force Research
Laboratory (AFRL) Rome Research Site (RRS),
ISL has been given access to their high-
performance computing resources. The main system
used thus far is the Heterogeneous High
Performance Computer which is a 48 node dual

Intel Xeon 2.2GHz with 4 Gb of SDRAM per node.
Each node is connected on both a Gigabit Ethernet
and Myrinet 2000 backbone. When writing the C
code for the MEX functions, the code that actually
performed the same functions as the Matlab code
were separated out and placed in libraries. This
design was employed as it allows an easier
transition to software independent of Matlab.

Simulation times for 1, 5, 10, 20, 30, 40, and 60
nodes are given in figure 1. The blue curve is ideal
linear speedup pTT1 where indicates the
expected simulation time using i processors. The
red circle markers are actual performance times.

iT

0 20 40 60 80 100
0

20

40

60

80

100

Sp
ee

du
p

Fa
ct

or
 T

1/T
p

Number of nodes

SBR Parallel Simulation Performance

Ideal linear speedup
Actual speeup

Figure 1 HHPC timing results

4. Summary and Future Work
Future optimization work is an open area of
consideration. Some areas being considered include
Lincoln Laboratories’ PVL, VSIPL++ parallel,
FPGA’s, and GPU clusters. ISL has used PVL in
other software and the AFRL HHPC cluster has a
Wildstar II FPGA board on each node, so these are
likely next steps. Additionally, ISL will continue to
improve on the VSIPL performance.

References
[1] P. M. Techau, et. al.,“Performance bounds for hot and
cold clutter mitigation,” IEEE Trans. on AES, vol. 35, pp.
1253-1265, October, 1999.

[2] D. Page, et al., “Improving knowledge-aided STAP
performance using past CPI data”, Proceedings of the
IEEE 2004 Radar Conference, April 26-29, 2004, pp. 295
– 300.

[3] P. M. Techau. “A general clutter signal model”. Draft
Technical Note, Information Systems Laboratories, Inc.
November 2005.

[4] www.darpa.mil/SPO/programs/kassper.htm

http://www.vsipl.org/

	Abstract
	1. Introduction
	2. Software Development
	3. Performance Results
	4. Summary and Future Work

