
COGENTCOGENT

COGnitive ENGine Technologies
(COGENT) – An Innovative

Architecture for Cognitive Processing

September 20, 2006

Exogi

Julius Bogdanowicz Raytheon - Principal Investigator
John Granacki USC-ISI - Co-Principal Investigator

This work was sponsored by DARPA IPTO in the Architectures for
Cognitive Information Processing program with Dr. William Harrod

as Program Manager; contract number FA8650-04-C-7126

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Approved for Public Release, Distribution Unlimited COGENTCOGENT2

Agenda

COGENT Team
Goals
Study Approach
Requirement Drivers
HW Philosophy
Architecture Levels
Agent Based Cognitive System Model
COGENT Hardware & Software
Performance
Differences with Conventional Architectures
Summary

Approved for Public Release, Distribution Unlimited COGENTCOGENT3

COGENT Team Members

Raytheon: Julius Bogdanowicz, Michael Vahey, Brad
Miller, Bradley Norman, Matt Benjamin, Mark
Redekopp, Doug Brink
USC-ISI: John Granacki, Jeff LaCoss, Wei-Min Shen,
Andrew Gordon, Jerry Hobbs, Mark Moll, Behnam
Salemi
Exogi: Craig Steele
Mercury Computer Systems: Jim Kulp
University of Pittsburgh: Daniel Mosse, Bruce Childers,
Jonathan Misurda
HRL: Howard Neely, Michael Daily
Georgia Tech: Sudhakar Yalamanchili, Krishna Palem,
Vincent Mooney, Santosh Pande

Approved for Public Release, Distribution Unlimited COGENTCOGENT4

COGENT Goals/Objectives

Broad Cognitive System Model based on spanning set of cognitive
components that will efficiently implement current functions and
enable new classes of cognitive algorithms
Scalable computational fabric with morphable, heterogeneous
hardware engines supporting multiple cognitive functions
Extensible, open architecture allows general and special purpose
accelerators for signal, data, and cognitive processing
Communications network enables tight coupling of cognitive
processing with classical signal, image, and data processing
Instrumented hardware architecture for reacting to external
environment and dynamic resource demands
Self awareness, reacts to measured processor & memory activity
patterns and the external environment to evaluate progress
towards goals and achieves best results within time constraints

Approved for Public Release, Distribution Unlimited COGENTCOGENT5

Flow from Challenge Problems to Architecture

Challenge
Problems

Elementary
Processes

Elementary
Transformations

Reasoning and
Learning
Methods

Mathematical,
Logical, and
Cognitive
Classes of
Methods

Abstraction of
Common
Elementary
Operations

Abstraction of
Elementary
Process Form:
Graph
Representations

Memory and
Representation
Architecture

Derivations of
New OPCODES

Hardware
Technologies and
Trades

COGENT
Architecture

Cognitive
System
Model

Approved for Public Release, Distribution Unlimited COGENTCOGENT6

UAV Dynamic
Planner

Cognitive Problems Identify Computing Needs

Intelligence
Analysis

Human Computer
Interface

Process cognitive applications for military missions
Recognition of warfighter intent

Understanding of warfighter desires in context
Interaction driven by cognitive agents intentions
Human problem understanding & decision making markedly improved

Analysis of intelligence data
Detection of hidden relationships in very large knowledge bases
Slowly changing knowledge base
Process very large problems

Planning for wide range of missions
Single autonomous vehicles → battlefield
Rapidly changing working data
Deliver real-time response in highly dynamic environments

Lessons learned
Applications need a robust Cognitive System Model

Adopted an Observe - Orient - Decide – Act + Learn (OODA+L) model
based on a combination of research cognitive models
Need latency tolerant processing techniques with large memories
Need sophisticated memory management techniques for episodic and long
term memory

Confirmed hardware support needed for agents, graphs, Bayesian
networks & a wide range of computational kernels
To simplify application development we decouple the computational
view from developers view
New classes of algorithms are required to exploit the new
computational fabric; must re-think the underlying computational
model

Approved for Public Release, Distribution Unlimited COGENTCOGENT7

Cognitive Motivation
Cognitive applications are characterized by:

Graph based operations and data structures
Sparse knowledge representation
“Inexact” Information
Very large amounts of parallelism at multiple levels

Observe: Input symbols distributed to multiple agents (sub/pub)
Orient/Decide: Competing Possible Worlds (OR-parallelism)
Orient/Decide: Searching and matching (Graph parallelism)

Potential for speculative processing – multiple predictive processes
Approximate solutions provided by “anytime” and best-available calculations

Prioritize promising processing contexts
Filter/Prune stale (too late) and ineffective (poor solution) processing

Learning - dynamic additions to knowledge base
Cognition is poor match to conventional systems

Limited parallelism with user specified management
Memory-intensive

Extensive pointer-chasing through graphs
Memory access is data dependent, limiting effective use of data caches

Profiling experiment: observed 1 IPC on 4-issue SGI system (80% data cache miss)
Processors optimized for numeric, not symbolic processing

Approved for Public Release, Distribution Unlimited COGENTCOGENT8

COGENT HW Architecture Philosophy

Enable & exploit parallelism at all levels
Multiprocessor system with very large distributed memory
HW generates and manages parallelism

Independent agents and/or Possible Worlds running in parallel
HW-managed multicasting of inputs to agents via sub/pub mechanism
Graph operations spawn parallel search and match operations

Mitigate cost of speculative computations
Minimize user awareness of parallelism

Manage parallel processing in HW where possible
Prioritizing – “promote” promising threads
Filtering – quickly prune ineffective and “too late” threads
Synchronizing – enforce “check-in”
Enable anytime or earliest/best processing

Provide HW support for cognitive middleware
Graph/Bayesian/HMM data structures
Fast access of distributed objects, network routing, etc.

Approved for Public Release, Distribution Unlimited COGENTCOGENT9

COGENT Architecture Levels

Machine organization
Single Name Space

Hardware micro-architectures
Graphs
Special-Purpose Accelerators (e.g. Bayes Nets)

Optimized cognitive systems
Servers
Embedded/real-time

Common Cognitive Services
Cognitive Agent Oriented Programming
Kernels (e.g., Probabilistic Reasoning)

Processing
System

Architecture
Processor

Architecture

Specific
Implementations

Cognitive
Architecture

Functional Level

Application Level

Meta-Cognition 0

1

2

3

4

6

5

Specify Mission goals & requirements
Performs goal selection, QoS

HL OODA+L Cognitive Architecture with
problem-solving rules specific to app

Cognitive Algorithms & Agent Architecture
Newell 7+2

Run-time High Level Compiler
Abstract Machine Models
Run-time Low Level Compiler & Resource Mgmt

Level

COGENT
Processing
Architecture

Approved for Public Release, Distribution Unlimited COGENTCOGENT10

COGENT Hardware and Functional
Organization for Embedded Applications

Low – Moderate
Status & Control

RatesLow
Symbolic

Information
Rates

Low – Very High
Data & Control

Rates

Low – Moderate
Status &
Control
Rates

Moderate Data
Low Information

Rates

COGENT
Cognitive
Processor

SAR

IR

Comm

Sensors &
Interfaces

Filters and
Data

Reduction

Object Recognition &
Feature Classification

Extremely High
Data Rates

Knowledge Based
Processing &

Learning

Output
Processing &

Interfaces

Comm

Actuators

User
Console

Coefficients, Algorithms, Etc
(Predictions of what to look for)

“Signal Processing” “Cognitive Processing”

Approved for Public Release, Distribution Unlimited COGENTCOGENT11

Orientation
Frame 2

Orientation
Frame 1

a

We Implement the Cognitive Architecture Using Intelligent Agents

Observation
Agent

State Information

Agent Agent Agent

Orientation-Dependent
Knowledge Base

Graphs, rules, etc. relevant
to the orientation situation.

Beliefs, hypothesis, goals,
active/inactive, etc.

Orientation Frame

Action
Manager

Agent

Prioritize,
Fuse,
Act

Actuators,
Environment,

etc.

API

Subscription
request

Query
interface

Actions

Symbolic
& Numeric

data Actuator
agent

API API

Orientation
Frame n

Approved for Public Release, Distribution Unlimited COGENTCOGENT12

Orientation
Frame 2

Orientation
Frame 1

a

We Implement the Cognitive Architecture Using Intelligent Agents

Observation
Agent

State Information

Agent Agent Agent

Orientation-Dependent
Knowledge Base

Graphs, rules, etc. relevant
to the orientation situation.

Beliefs, hypothesis, goals,
active/inactive, etc.

Orientation Frame

Action
Manager

Agent

Prioritize,
Fuse,
Act

Actuators,
Environment,

etc.

API

Subscription
request

Query
interface

Actions

Symbolic
& Numeric

data Actuator
agent

API API

Orientation
Frame n

1: Observe

Perceptions are formed based
on “what we are looking for” –
i.e. , they are driven by
preconception of what we
expect in the world, our current
needs, etc.

Approved for Public Release, Distribution Unlimited COGENTCOGENT13

Orientation
Frame 2

Orientation
Frame 1

a

We Implement the Cognitive Architecture Using Intelligent Agents

Observation
Agent

State Information

Agent Agent Agent

Orientation-Dependent
Knowledge Base

Graphs, rules, etc. relevant
to the orientation situation.

Beliefs, hypothesis, goals,
active/inactive, etc.

Orientation Frame

Action
Manager

Agent

Prioritize,
Fuse,
Act

Actuators,
Environment,

etc.

API

Subscription
request

Query
interface

Actions

Symbolic
& Numeric

data Actuator
agent

API API

Orientation
Frame n

1: Observe 2: Orient

Individual Agents may be Reactive (propose an action in response
to some observed situation) or part of a Deliberative process
(perform some kind of formal or informal reasoning, including
matching Episodic Memory, i.e., remembering when such a
situation arose before, and what we did then, then using a process
of Analogical Reasoning to apply it to the current circumstances.

Perceptions are formed based
on “what we are looking for” –
i.e. , they are driven by
preconception of what we
expect in the world, our current
needs, etc.

Each frame represents a
different point of view –
different assumptions
about how the world
really is, and therefore
what is most important.

Inexact Pattern-matching rules are used to mediate this process,
similar to ACT-R. As we reuse analogies, we may induce new
pattern rules to help us get to the more productive “ways to think
about a situation”, which may ultimately lead to new orientation
frames as well (if we learn to differentiate between situations).

Approved for Public Release, Distribution Unlimited COGENTCOGENT14

Orientation
Frame 2

Orientation
Frame 1

a

We Implement the Cognitive Architecture Using Intelligent Agents

Observation
Agent

State Information

Agent Agent Agent

Orientation-Dependent
Knowledge Base

Graphs, rules, etc. relevant
to the orientation situation.

Beliefs, hypothesis, goals,
active/inactive, etc.

Orientation Frame

Action
Manager

Agent

Prioritize,
Fuse,
Act

Actuators,
Environment,

etc.

API

Subscription
request

Query
interface

Actions

Symbolic
& Numeric

data Actuator
agent

API API

Orientation
Frame n

1: Observe 2: Orient

3: Decide

Individual Agents may be Reactive (propose an action in response
to some observed situation) or part of a Deliberative process
(perform some kind of formal or informal reasoning, including
matching Episodic Memory, i.e., remembering when such a
situation arose before, and what we did then, then using a process
of Analogical Reasoning to apply it to the current circumstances.

Perceptions are formed based
on “what we are looking for” –
i.e. , they are driven by
preconception of what we
expect in the world, our current
needs, etc.

Each Frame proposes actions (which may be part
of more elaborate plans) which are compared and
correlated here. One action might benefit multiple
orientations and goals; an agent may be able to
perform more than one action at once, etc. Here,
we pick a rational set of things to do now

Each frame represents a
different point of view –
different assumptions
about how the world
really is, and therefore
what is most important.

Inexact Pattern-matching rules are used to mediate this process,
similar to ACT-R. As we reuse analogies, we may induce new
pattern rules to help us get to the more productive “ways to think
about a situation”, which may ultimately lead to new orientation
frames as well (if we learn to differentiate between situations).

Approved for Public Release, Distribution Unlimited COGENTCOGENT15

Orientation
Frame 2

Orientation
Frame 1

a

We Implement the Cognitive Architecture Using Intelligent Agents

Observation
Agent

State Information

Agent Agent Agent

Orientation-Dependent
Knowledge Base

Graphs, rules, etc. relevant
to the orientation situation.

Beliefs, hypothesis, goals,
active/inactive, etc.

Orientation Frame

Action
Manager

Agent

Prioritize,
Fuse,
Act

Actuators,
Environment,

etc.

API

Subscription
request

Query
interface

Actions

Symbolic
& Numeric

data Actuator
agent

API API

Orientation
Frame n

1: Observe 2: Orient
4: Act

3: Decide

Individual Agents may be Reactive (propose an action in response
to some observed situation) or part of a Deliberative process
(perform some kind of formal or informal reasoning, including
matching Episodic Memory, i.e., remembering when such a
situation arose before, and what we did then, then using a process
of Analogical Reasoning to apply it to the current circumstances.

Perceptions are formed based
on “what we are looking for” –
i.e. , they are driven by
preconception of what we
expect in the world, our current
needs, etc.

Each Frame proposes actions (which may be part
of more elaborate plans) which are compared and
correlated here. One action might benefit multiple
orientations and goals; an agent may be able to
perform more than one action at once, etc. Here,
we pick a rational set of things to do now

Each frame represents a
different point of view –
different assumptions
about how the world
really is, and therefore
what is most important.

The system drives
specific actuators,
processes or
interacts with the
environment;

Inexact Pattern-matching rules are used to mediate this process,
similar to ACT-R. As we reuse analogies, we may induce new
pattern rules to help us get to the more productive “ways to think
about a situation”, which may ultimately lead to new orientation
frames as well (if we learn to differentiate between situations).

As we go around
the loop we learn
how the effects
differ from our
model; this can
lead to a virtuous
“practice
feedback” cycle.

Approved for Public Release, Distribution Unlimited COGENTCOGENT16

COGENT: A Highly Parallel Cognitive Processor
Concurrent agents drive multiple predictive “possible worlds” storage and
relationships
Universal name space enforced across computation fabric storage accelerates
agents and prunes unnecessary work

Agent-Based
Programming Model

Graph:
Information

Space

Cognitive
Control
Space

Recirculating
Computational Flow

Agent Control Environment

PFF

CAGE
CAGE
CAGE

Independent
(Fundam

ental)
K

now
ledge

W
orld V

iew
O

rientation
Fram

es

W
orld V

iew
O

rientation
Fram

es
Cognitive API: Operators plus Utilities

C
ontrol

DDCDDC

PFF CAGE

Single locus of global name translation

DDC = Data Distribution Center- hardware for automatic “scatter” (distribution of computation to the
relevant, distributed data)

CAGE = Cognitive Agent & Graph Engine – form parallel computing fabric, accelerates primitive
operations on graphs, supports probabilistic reasoning; uses distributed, scalable data storage

PFF = Prioritize, Filter and Fuse – automatic gather, coalescing results, pruning of stale and
unproductive computation, time based to assure timely results

Metacog
Agents

Agent 003
Agent 002
Agent 001

High
Speed
Input

Outputs
HW accelerates static and dynamic graph management

time
guards

A
ns

w
er

s
Observe Orient Act

Decide

External
World

(Environment)

Application-
Independent

Cognitive
Architecture

HW-managed
Parallelism &
Namespace

Programmer View

Computational View

Approved for Public Release, Distribution Unlimited COGENTCOGENT17

Graphs and Efficiency
Highly parallel computation

Relational structure of graphs makes inherent parallelism
apparent

COGENT accelerates computation on large graphs:
Program instructions sent to location of data to minimize
data movement optimizes bandwidth usage.
HW managed label-based routing of graphs and vertices
(DDC)
Fast lookup of local graph vertices on a CAGE node
Wide-word memory access & processing of graph
components on a CAGE node
CAGE HW supports memory re-organization for efficient
access to sparse to dense graph structures

Garbage collection performed during process

Approved for Public Release, Distribution Unlimited COGENTCOGENT18

COGENT HW Architecture
Recirculating Computational Flow

PFF

CAGE
CAGE
CAGE

DDCDDC

PFF CAGE

High
Speed
Input

Outputs

time
guards

DDC = Data Distribution Center -
hardware for routing messages
(data or computation tasks) to
CAGE “worker” processors.
Routing is equivalent to automatic
“scatter” (distribution) of
computation to the relevant,
distributed data located in 1 or
more CAGE nodesHit/Miss

Output
Queue

Memory

Router Exception
Processor

M
em

ory
Transfer Engine

O
ff-N

ode
M

em
ory Interface

Input
Queue

Network Interface

64/128 b
512 b

Packet
Engine

CAM-aided

ID-to-Route
Translation

Approved for Public Release, Distribution Unlimited COGENTCOGENT19

COGENT HW Architecture
Recirculating Computational Flow

PFF

CAGE
CAGE
CAGE

DDCDDC

PFF CAGE

High
Speed
Input

Outputs

time
guards

CAGE = Cognitive Agent & Graph Engine(s) –
form parallel computing fabric, hosts
agents, augmented ISA accelerates
primitive operations on graphs, supports
probabilistic reasoning, uses distributed,
scalable data storage; Agents
distributed to 1 or more CAGE nodes,
Agents spawn cognitive functions
located on 1 or more CAGE nodes,
Computations requests on non-local
data are automatically sent to proper
CAGE node via PFF & DDC

Hit/Miss

Packet
Engine

Output
Queue

Local ID
Translation

Node
Memory

Node Processor
4-way Multithread

64-bit Address/Data Architecture
512-bit WideWord

Memory Access Logic
Reorganization Engine

M
em

ory
Transfer Engine

O
ff-N

ode
M

em
ory Interface

Input
Queue

Network Interface

R-N
Gen

64/128 b
512 b

Approved for Public Release, Distribution Unlimited COGENTCOGENT20

COGENT HW Architecture
Recirculating Computational Flow

PFF

CAGE
CAGE
CAGE

DDCDDC

PFF CAGE

High
Speed
Input

Outputs

time
guards

PFF = Prioritize, Filter and Fuse –
automatic “gather”/ coalescing
results from CAGE(s), pruning
of stale and unproductive
computation, re-circulates
uncompleted computations
through DDC, time based to
assure timely results

Hit/Miss

Output
Queue

Memory

Barrier Synchronization &
Routing Processor

M
em

ory
Transfer Engine

O
ff-N

ode
M

em
ory Interface

Input
Queue

Network Interface

64/128 b
512 b

Packet
Engine

Local ID
Translation

Packet
Filter

Approved for Public Release, Distribution Unlimited COGENTCOGENT21

Cogent 50+
Fundamental Operations

Agents/Components

Node Comm Primitives

Local Cog50
Elementary

Building Blocks

Agent Abstraction

Components Abstraction: active/autonomous/connected

Cognitive Agent Abstraction

Local RTOS
Services

Local Comm
Services

Component
Infrastructure

Component-based Kernels

Agent abstraction implemented as assemblies of components

Library Agents

Local Libraries
(e.g. math)

CAGE
Node

Distributed/
Parallel

AOP/CAOP

Agent-based Cognitive Architecture: OODA, Orientation frames etc.

Library Components/Assemblies

Node Processing ISA

Approved for Public Release, Distribution Unlimited COGENTCOGENT22

Example of Simulated Performance

Surrogate for UAV ISR
planner using analogical
reasoning
Problem size: 6600
propositions represented as
a graph structure with 40K
vertices & 80K edges
Extrapolated performance on
Intel Pentium 4 was 40 hours
Goal: 800X speedup
Minimum of 32 CAGE
processors needed to
exceed goal

Speed up Over Intel
Pentium 4 Baseline

0

1000

2000

3000

4000

5000

6000

Number of
CAGE nodes

Speed
up

16
32
64
128

GOAL:

Approved for Public Release, Distribution Unlimited COGENTCOGENT23

COGENT vs. Conventional Architecture

Semantically accessed memory: Graph based
representation of knowledge – HW optimized
access and manipulation mechanisms

Word focused – no semantics

Ops concept is driven from data flow and
probabilistic data relationships – dynamically
adjusted based on experience

Ops concept is driven from
program counter, interrupts,
etc.

Probabilistic representations, reconstructive
memory – runtime synthesized data representations

Exact, repeatable deterministic
functions – low level
semaphores

Optimizations for the cognitive operations –
intensive memory focus – staging and location of
data HW optimized

General computing – RISC
instruction set – register file
focus – compiler driven
program

HW manipulation of memory access, global ID vs.
address, publish and subscribe to information
sources

Load/store access to memory

No cache – large knowledge bases won’t fit
Large on chip memories with good BW – per
processor memory BW > 100 GB/S

Relies heavily on cache:
dynamic access patterns make
cache ineffective

COGENT ProcessorConventional Processor

Approved for Public Release, Distribution Unlimited COGENTCOGENT24

Summary

COGENT is an innovative recirculating computational
architecture for cognitive processing
COGENT architecture is being driven by application &
cognitive system model requirements
A single unified hardware & software structure has
been defined

Hardware directly supports the management of parallelism
Agent based software structure provides foundation for OODA based
cognitive system model to implement the applications

Simulations are being used to refine the architectural
details

