
COGENT – An Innovative Architecture for Cognitive Processing
Julius F. Bogdanowicz

Raytheon, jfbogdanowicz@raytheon.com
John Granacki

USC-ISI, Granacki@isi.edu

Overview1

The COGENT project is sponsored by the DARPA IPTO
office under the Architectures for Cognitive Information
processing program. Raytheon is leading a diverse team to
define processing requirements for emerging DoD cognitive
applications and cognitive system models to develop
architecture concepts for a new class of architecture that
will provide orders of magnitude improvements in
processing capability for this type of processing.

Development Approach
The COGENT team has been using a top-down
development approach to conceptualize the COGENT
cognitive architecture. This approach is driven by a
derivation of computational requirements for emerging
DoD cognitive applications, profiling of existing algorithm
implementations and the definition of an application
independent Cognitive System Model based on the
characteristics of a number of research cognitive systems
such as SOAR, ACT-R, and Icarus. Figure 1 provides an
overview of the development approach.

Application Attributes
We have evaluated a number of applications such as
dynamic planning for unattended vehicles, intelligence
analysis, and the human computer interface. In general, a
cognitive system must be able to deliver real-time response

in very dynamic environments, process very large amounts
of knowledge and data, and support the modeling of the
Warfighter’s intent. Applications need a robust cognitive
system model. We have adopted an Observe-Orient-
Decide-Act + Learn model for COGENT. In general the
system must “Sense and Respond” to the environment,
“Predict and “Prepare” what actions to take next and exploit
both “Reactive” and “Contemplative” processes. Graphs are
used to provide a formal, expressive representation for
knowledge in the system.

Processing parallelism is available at the coarse (alternative
processing contexts), mid level (multiple computational
threads) and low level (within a processing thread).
Computations are based on inexact information and must be
managed to avoid exhaustive search to provide approximate
solutions. Latency tolerant processing techniques are
needed with sophisticated memory management techniques
for access and manipulation of sparse memory
representations in short/long term memory. To simplify
application development, the computational view of the
system should be decoupled from the developer’s view. The
system will need to support a wide range of computation
kernels.

COGENT Processing Architecture
The COGENT evaluated a number of alternative
computational architectures for the ACIP program. We
have selected a novel re-circulating type architecture which
is memory centric. We move the computation to where the
data is instead of moving the data. Figure 2 provides a
toplevel view of the architecture. The top portion of the
figure provides an application independent view of the
cognitive architecture supporting the developer and the
bottom half of the figure provides a computational view of
the hardware. A universal naming approach is used for data,
agents and processing contexts. The developer has no
knowledge of where data is stored or processed within the
computational fabric.

The computational fabric is composed of three major
elements: Data distribution Center (DDC), Cognitive Agent
& Graph Engine (CAGE), and Prioritize-Filter-Fuse (PFF).
The DDC automatically “scatters” the computation to the
appropriate CAGE node that contains the data. The CAGE
nodes provides support for legacy codes and provides
accelerated semantic access to short/long term memory and
primitive graph operations. Memory is distributed across
the CAGE nodes. CAGE nodes do not communicate
directly. The PFF automatically gathers and coalesces

Figure 1: A topdown development approach is being
used on the COGENT project.

Challenge
Problems

Elementary
Processes

Elementary
Transformations

Reasoning and
Learning
Methods

Mathematical,
Logical, and
Cognitive
Classes of
Methods

Abstraction of
Common
Elementary
Operations

Abstraction of
Elementary
Process Form:
Graph
Representations

Memory and
Representation
Architecture

Derivations of
New OPCODES

Hardware
Technologies and
Trades

COGENT
Architecture

Cognitive
System
Model

Challenge
Problems

Elementary
Processes

Elementary
Transformations

Reasoning and
Learning
Methods

Mathematical,
Logical, and
Cognitive
Classes of
Methods

Abstraction of
Common
Elementary
Operations

Abstraction of
Elementary
Process Form:
Graph
Representations

Memory and
Representation
Architecture

Derivations of
New OPCODES

Hardware
Technologies and
Trades

COGENT
Architecture

Challenge
Problems

Elementary
Processes

Elementary
Transformations

Reasoning and
Learning
Methods

Mathematical,
Logical, and
Cognitive
Classes of
Methods

Abstraction of
Common
Elementary
Operations

Abstraction of
Elementary
Process Form:
Graph
Representations

Memory and
Representation
Architecture

Derivations of
New OPCODES

Hardware
Technologies and
Trades

COGENT
Architecture

Cognitive
System
Model

mailto:jfbogdanowicz@raytheon.com

results, prunes stale and unproductive computations and re-
circulates unfinished computations to the DDC for re-
distribution to the appropriate CAGE node.

A functional simulator has been developed for the
COGENT processing architecture. A set of fundamental
and elementary operations have been developed for
execution on these architectural elements. An analogical
reasoning system has been implemented on the simulator.
Analogical reasoning is a major component of many
cognitive system models and has been used for applications
such as dynamic planning. At the beginning of the program,
we defined a goal of achieving a minimum speedup of 800x
over an Intel 4 baseline. Currently, we have shown that a 64
CAGE node system can achieve a speedup in excess of
1200x.

Table 1 provides a comparison of some of the differences
between a conventional processor and the COGENT
system. Differences in memory organization and access and
system control flow are highlighted.

Summary
We have provided a brief high level view of a new
processing architecture concept developed for cognitive
processing. During Phase 2 of the ACIP program, a detailed
design and simulation/emulation of the architecture will be
performed.

Table 1. Comparison of COGENT and Conventional
Processor Features.

Conventional
Processor

COGENT Processor

Relies heavily on cache:
dynamic access patterns
make cache ineffective

No cache – large knowledge base does
not fit; large on chip memories with
good bandwidth – processor memory
BW > 100 GB/S

Load/store access to
memory

HW manipulation of memory access,
global ID vs. address, publish and
subscribe to information sources

Word focused – no
semantics

Semantically accessed memory: Graph
based representation of knowledge –
HW optimized access and
manipulation mechanisms

General computing: RISC
instruction set, register
file focus, compiler driven
program

Optimizations for the cognitive
operations – intensive memory focus
with staging and location of data HW
optimized

Exact, repeatable
deterministic functions
with low level
semaphores

Probabilistic representations,
reconstructive memory for runtime
synthesized data representations

Ops concept is driven
from program counter,
interrupts, etc.

Ops concept is driven from data flow
and probabilistic data relationships –
dynamically adjusted based on
experience

Figure 2. High level View of COGENT Processing Architecture.

Concurrent agents drive multiple predictive “possible worlds” storage and
relationships
Universal name space enforced across computation fabric storage accelerates
agents and prunes unnecessary work

Agent-Based
Programming Model

Graph:
Information

Space

Cognitive
Control
Space

Recirculating
Computational Flow

Agent Control Environment

PFF

CAGE
CAGE
CAGE

Independent
(Fundam

ental)
Know

ledge

W
orld V

iew
O

rientation
Fram

es

W
orld V

iew
O

rientation
Fram

es

ACIP API: Operators plus Utilities

C
ontrol

DDCDDC

PFF CAGE

Single locus of global name translation

DDC = Data Distribution Center- hardware for automatic “scatter” (distribution of computation to the
relevant, distributed data)

CAGE = Cognitive Agent & Graph Engine - parallel computing fabric - direct support for legacy codes,
accelerated primitive ops, graphs, Bayesians, distributed, scalable data storage

PFF = Prioritize, Filter and Fuse – automatic gather, coalescing results, pruning of stale and
unproductive computation, time based to assure timely results

Metacog
Agents

Agent 003
Agent 002
Agent 001

Agent 003
Agent 002
Agent 001

High
Speed
Input

Outputs
HW accelerates static and dynamic graph management

time
guards

A
ns

w
er

s

Observe Orient Act

Decide

Observe Orient Act

Decide

External
World

(Environment)

External
World

(Environment)

Application-
Independent

Cognitive
Architecture

HW-managed
Parallelism &
Namespace

Developer View

Computational View

