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Morphware: Phased Compilation

C program
for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

A[i][j] = f(B[i],C[j]);
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Morphware Stable Interface

• MSI exposes an open layer 
between compile stages
– defines a computational model
– provides a productivity layer

• Productivity layer
– enables separate development 

of HLCs and LLCs
– eases expansion to new targets
– enables development of 

implementation libraries for use 
with LLCs

High Level Compiler

Low Level Compiler

Machine-Specific 
Binary

Exposed VM Layer

Source Code

Machine Model

VM Libraries
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Tiled Multiprocessor

Exploiting Locality and Parallelism

mem

mem

mem

…

Memory
and
I/O

DMA

DMA

DMA

…

• High performance at low(er) power – FLOPS/W



6r eser voi r abs HPEC
September 20, 2006

Applications: GMTI
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Compiler Challenges

• Automatic management of small on-chip scratchpad memories

• High performance requires locality of reference

• Exploiting parallelism from the source code
– Traditional approach: exploit the parallelism in loops

• good source of data-parallelism
– Large body of research to draw upon

• including the polyhedral model; still, implementation lags research

• Locality and parallelism 
– a.k.a., Stream Processing
– Pipelining data between different tasks across the PEs on chip
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R-Stream: High-Level Design
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R-Stream Design Goals

• Static mapping
• Optimizations:

– Parallelism extraction
– Loop transformations
– Locality optimizations
– Data layout transformations
– DMA generation
– Communication optimizations
– Data distribution and processor mapping

• Combining optimizations
• Flexible platform for experimentation
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High-Level Compiler

Compiler InfrastructureCompiler Infrastructure
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Compiler Infrastructure: Raising

• Very much like a traditional compiler in structure
• Goal is different: want to raise abstraction for mapping

ISO C (EDG)

IL JIL (JNI)

JIL IR

IR SSA IR

Abstraction Recovery

GDG polyhedral
mapper

• structured loops
• array objects
• affine expressions
• memory disambiguation

• SSA
• Conditional Constant Propagation 
(CCP)
• Algebraic Simplification
• Dead Code Elimination (DCE)
• Operator Strength Reduction (OSR)
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Polyhedral Mapper

Affine Partitioning

Loop Fusion

Tiling

Placement

Local Memory Compaction

Communication Generation

Synchronization Generation

DMA Optimization

Polyhedral Scanning

• finding the parallelism

• coarse grouping of statements

• refining statement groups into tasks

• scheduling tiles to physical processors

• reducing memory footprint

• inter-task communications

• create DMA operations

• insert barriers, etc.

• generate new code from polyhedral abstraction
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Compiler Infrastructure: Lowering

de-SSA

• Again, similar to traditional compiler in structure
• Goal: lower the mapped code for output to the LLC

Scalar optimizations

IR normalization

Target API

GDG
polyhedral

mapper

• per target machine information

Output restructured C/SVM

Syntactic sugaring

• making output more readable
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The Polyhedral Model
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Polyhedral Model

dependence preserving
optimizations

semantics preserving optimizations

basic polyhedral model

affine transformations

classical
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Why the Polyhedral Model?

• A natural representation for static control programs

• All our optimizations can live in the same mathematical space.
– Make it easier to combine optimizations

• More powerful modeling and computation techniques

• Parametric analysis

• Clean mathematical model to reason about loops

• Extensible
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Classical Loop Transformations

Often limited to:
• Coarse dependence summary:  e.g., 

direction and distance vectors 
• Single statement transformations
• Perfectly nested loops
• Unimodular transformations
• Specific ordering of phases

Program representation tied to syntax
Often divided into phases:

1. modeling
2. analysis
3. code generation

for(j=0; j<N; j++)
for(i=0; i<N; i++)
S(j,i);

for(i=0;i<N/M;i++)
for(j=0;j<N/M;j++)
for(ii=0;ii<M;ii++)
for(jj=0;jj<M;jj++)
S(j+jj,i+ii);

apply transformation (tiling)

Abstract syntax tree
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Polyhedral Representation in a Nutshell

for (i=2; i<=M; i++) {
for (j=0; j<=N; j+=2)

A[i,N-j] = C[i-2,4*i+j/2];
for (j=i; j<=N; j++) 

B[i,N-j] = A[i,j+1];
}
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Transformations in the Polyhedral Model

• Optimizations are mathematical 
transformations

• Can use exact dependence
• Find schedules for multiple statements
• Not limited perfectly nested loops
• Not limited to unimodular transformations
• Not limited to linear-algebraic techniques
• Stay within a single mathematical 

representation between optimizations
• Compositional
• Parametric
• Loop synthesis at the very end to generate 

code

for(j=0; j<N; j++)
for(i=0; i<N; i++)
S(i,j);

for(i=4-4*N; i<=0; i++)
for(j=max((1-i-N)/3, 0); 

j<=min((-i/3), N-1);  
j++)

S(j,-i-3*j);
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Abstract syntax tree

Abstract syntax tree
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Subsumes Classic Loop Transformations

for(i=0; i<N; i++)
for(j=0; j<N; j++)
S(i,j);

for(j=0; j<N; j++)
for(i=0; i<N; i++)
S(i,j);

for(i=N-1; i>=0; i--)
for(j=0; j<N; j++)
S(j,i);

for(i=0; i<N; i++)
for(j=α*i; j<N+α*i; j++)
S(i,j-α*i);
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for(i=0; i<α*N; i+=α)
for(j=0; j<N; j++)
S(i/α,j);
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Loop Transformations as Scheduling

iteration space of a statement S(i,j)
j

i

22: ZZ →θ

t1

t2

Schedule θ maps iterations to multi-dimensional time 

Loop transformations/synthesis mean generating code to execution iterations 
of a loop in the lexicographicall order of time

A feasible schedule must preserve dependencies



22r eser voi r abs HPEC
September 20, 2006

Polyhedral Challenges

• Algorithms for solving the problems
– may be very expensive
– may not scale (can be super-exponential in time and space)
– may not exist (specific problem not studied in the literature)

• Power is a double-edged sword
– can find “all” parallelism
– can find infinite families of legal schedules
– must know what parallelism is best suited for target architecture

• Application of transformations is easy
– knowing when, where and why (or why not) to apply them can be much 

more difficult to decide
– must decide based on the target architecture’s features and limitations
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Specific Reservoir Innovations

• Parallelism extraction
– extensions to work of Lim and Lam, and others
– extensions deal with locality and communication minimization

• Local memory compaction
– rearranges data layout in local memory to improve memory usage
– extensions to the algorithms of Schreiber and Cronquist

• DMA optimization
– compute min-cost sets of DMA transfers 
– extension of algorithms for generating efficient message passing by 

Paek, et.al.
• Parametric tiling

– generality: operates on collections of imperfect loop nests
– find a best tiling, defined in terms of polynomial objective functions and 

constraints, over a space of possible tile sizes
– considers re-use, memory footprint, etc.
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R-Stream on Cell
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PPE

Cell Architecture
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Kernel Codes

for (int i = 0; i < N; i++) {
C[i] = A[i] * A[i] + B[i] * B[i];

}

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

C[i][j] = 0;
for (int k = 0; j < N; j++) {

C[i][j] = C[i][j] + A[i][k] * B[k][j];
}

}
}

N=8*1024*1024

N=1024

Single precision floating point only
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Vector Sum of Squares Results

float (* restrict A_local) __attribute__((aligned(128))) = ...;
float (* restrict B_local) __attribute__((aligned(128))) = ...;
float (* restrict C_local) __attribute__((aligned(128))) = ...;
for (int i = 0; i < N; i++) {
C_local[i] = A_local[i] * A_local[i] +

B_local[i] * B_local[i];
}

21.090.6618.21s2048yesyes4096

19.880.624.83s2048yesyes1024

18.150.575.29s2048noyes1024

17.080.535.62s2048yesno1024

10.380.329.25s2048nono1024

Bandwith
(GB/s)

GFlops/SPU/sTimeNPipelinedSIMDizedTrials

Memory bandwidth: 25.6GB/s peak, ~21GB/s sustainable
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Matrix Multiply Results

• Not bandwidth bound; plenty of parallelism
• Key component to performance:

– excellent SIMDization on the SPUs
• Working on closing the gap between the HLC and LLC

– working with IBM; new version of their compiler “in the mail”
– anticipate results will achieve closer to 50% of peak

1.2712.55yesyes64

0.20478.5yesno64
1.2013.36noyes64

0.20279.4nono64

GFlops/SPU/sTimePipelinedSIMDimizedTrials

25.6 GFlops/SPU/s peak
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Research Challenges

• Some architectures just now realizing silicon
– Much more experimentation needed
– What optimizations are needed?  Which work best?

• Scalability: how big a problem can we map?
• What are the implications for parallel programming languages?
• How can we guide the programmer constructively?
• More work on optimization for the memory hierarchy
• How much performance do we sacrifice with layered 

compilation?
– Need strategies to ameliorate this potential gap
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Conclusion

• Investigation and experimentation with phased compilation
– PCA, Morphware Forum, SVM

• Compiler that can automatically
– find parallelism
– manage small scratchpad memories
– generate communications

• Advancement of polyhedral model
– improving published algorithms
– new algorithms and optimizations
– mapper uses polyhedral algorithms upon polyhedral representation

• Some initial results of applying polyhedral mapper on Cell
– working on closing the gaps between HLC and LLC

• Still more work to be done…


