
1r eser voi r abs HPEC
September 20, 2006

R-Stream: A Parametric High Level Compiler

Eric Schweitz, Richard Lethin, Allen Leung, Benoit Meister
Reservoir Labs, Inc.

This work was sponsored by DARPA IPTO in the Polymorphous
Computing Architectures program with Dr. William Harrod as Program

Manager; contract number F30602-03-C-0033.

2r eser voi r abs HPEC
September 20, 2006

Outline

• Introduction
– Morphware Forum and PCA
– Applications
– Challenges

• R-Stream: High-Level Design

• Polyhedral Model

• Preliminary Results on IBM Cell

• Conclusion

3r eser voi r abs HPEC
September 20, 2006

Morphware: Phased Compilation

C program
for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

A[i][j] = f(B[i],C[j]);

R-Stream
High-Level Compiler

PCA
Machine
Model

PCA SVM

TRIPS
LLC

MONARCH
LLC

Smart Mem
LLC

RAW
LLC

Morphware MSI

4r eser voi r abs HPEC
September 20, 2006

Morphware Stable Interface

• MSI exposes an open layer
between compile stages
– defines a computational model
– provides a productivity layer

• Productivity layer
– enables separate development

of HLCs and LLCs
– eases expansion to new targets
– enables development of

implementation libraries for use
with LLCs

High Level Compiler

Low Level Compiler

Machine-Specific
Binary

Exposed VM Layer

Source Code

Machine Model

VM Libraries

5r eser voi r abs HPEC
September 20, 2006

Tiled Multiprocessor

Exploiting Locality and Parallelism

mem

mem

mem

…

Memory
and
I/O

DMA

DMA

DMA

…

• High performance at low(er) power – FLOPS/W

6r eser voi r abs HPEC
September 20, 2006

Applications: GMTI

7r eser voi r abs HPEC
September 20, 2006

Compiler Challenges

• Automatic management of small on-chip scratchpad memories

• High performance requires locality of reference

• Exploiting parallelism from the source code
– Traditional approach: exploit the parallelism in loops

• good source of data-parallelism
– Large body of research to draw upon

• including the polyhedral model; still, implementation lags research

• Locality and parallelism
– a.k.a., Stream Processing
– Pipelining data between different tasks across the PEs on chip

8r eser voi r abs HPEC
September 20, 2006

R-Stream: High-Level Design

9r eser voi r abs HPEC
September 20, 2006

R-Stream Design Goals

• Static mapping
• Optimizations:

– Parallelism extraction
– Loop transformations
– Locality optimizations
– Data layout transformations
– DMA generation
– Communication optimizations
– Data distribution and processor mapping

• Combining optimizations
• Flexible platform for experimentation

10r eser voi r abs HPEC
September 20, 2006

High-Level Compiler

Compiler InfrastructureCompiler Infrastructure

Polyhedral
Mapper

Polyhedral
Mapper

ISO
 C

 Front End
ISO

 C
 Front End

C
ode G

en/B
ack End

C
ode G

en/B
ack End

SVM

Low
-Level C

om
pilers

Low
-Level C

om
pilers

R-Stream 3.0

RaisingRaising LoweringLowering

…

11r eser voi r abs HPEC
September 20, 2006

Compiler Infrastructure: Raising

• Very much like a traditional compiler in structure
• Goal is different: want to raise abstraction for mapping

ISO C (EDG)

IL JIL (JNI)

JIL IR

IR SSA IR

Abstraction Recovery

GDG polyhedral
mapper

• structured loops
• array objects
• affine expressions
• memory disambiguation

• SSA
• Conditional Constant Propagation
(CCP)
• Algebraic Simplification
• Dead Code Elimination (DCE)
• Operator Strength Reduction (OSR)

12r eser voi r abs HPEC
September 20, 2006

Polyhedral Mapper

Affine Partitioning

Loop Fusion

Tiling

Placement

Local Memory Compaction

Communication Generation

Synchronization Generation

DMA Optimization

Polyhedral Scanning

• finding the parallelism

• coarse grouping of statements

• refining statement groups into tasks

• scheduling tiles to physical processors

• reducing memory footprint

• inter-task communications

• create DMA operations

• insert barriers, etc.

• generate new code from polyhedral abstraction

13r eser voi r abs HPEC
September 20, 2006

Compiler Infrastructure: Lowering

de-SSA

• Again, similar to traditional compiler in structure
• Goal: lower the mapped code for output to the LLC

Scalar optimizations

IR normalization

Target API

GDG
polyhedral

mapper

• per target machine information

Output restructured C/SVM

Syntactic sugaring

• making output more readable

14r eser voi r abs HPEC
September 20, 2006

The Polyhedral Model

15r eser voi r abs HPEC
September 20, 2006

Polyhedral Model

dependence preserving
optimizations

semantics preserving optimizations

basic polyhedral model

affine transformations

classical

16r eser voi r abs HPEC
September 20, 2006

Why the Polyhedral Model?

• A natural representation for static control programs

• All our optimizations can live in the same mathematical space.
– Make it easier to combine optimizations

• More powerful modeling and computation techniques

• Parametric analysis

• Clean mathematical model to reason about loops

• Extensible

17r eser voi r abs HPEC
September 20, 2006

Classical Loop Transformations

Often limited to:
• Coarse dependence summary: e.g.,

direction and distance vectors
• Single statement transformations
• Perfectly nested loops
• Unimodular transformations
• Specific ordering of phases

Program representation tied to syntax
Often divided into phases:

1. modeling
2. analysis
3. code generation

for(j=0; j<N; j++)
for(i=0; i<N; i++)
S(j,i);

for(i=0;i<N/M;i++)
for(j=0;j<N/M;j++)
for(ii=0;ii<M;ii++)
for(jj=0;jj<M;jj++)
S(j+jj,i+ii);

apply transformation (tiling)

Abstract syntax tree

18r eser voi r abs HPEC
September 20, 2006

Polyhedral Representation in a Nutshell

for (i=2; i<=M; i++) {
for (j=0; j<=N; j+=2)

A[i,N-j] = C[i-2,4*i+j/2];
for (j=i; j<=N; j++)

B[i,N-j] = A[i,j+1];
}

1 0 0 0 0
0 1 0 1 0
0 0 0 0 1

1

i
j
M
N

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
10000
10010
00001

N
M
j
i

},2|),{(NjiMiji ≤≤≤≤

Iteration domains as polyhedra

Variables and access functions

Affine schedules determine
the execution order

AB

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
10000
00100
00000
00010
10000
00001
00000

N
M
j
i

Dependence relations tie these components together

19r eser voi r abs HPEC
September 20, 2006

Transformations in the Polyhedral Model

• Optimizations are mathematical
transformations

• Can use exact dependence
• Find schedules for multiple statements
• Not limited perfectly nested loops
• Not limited to unimodular transformations
• Not limited to linear-algebraic techniques
• Stay within a single mathematical

representation between optimizations
• Compositional
• Parametric
• Loop synthesis at the very end to generate

code

for(j=0; j<N; j++)
for(i=0; i<N; i++)
S(i,j);

for(i=4-4*N; i<=0; i++)
for(j=max((1-i-N)/3, 0);

j<=min((-i/3), N-1);
j++)

S(j,-i-3*j);

⎥
⎦

⎤
⎢
⎣

⎡
10
01

loop synthesis

Abstract syntax tree

Abstract syntax tree

mathematical modeling
⎥
⎦

⎤
⎢
⎣

⎡
10
31

⎥
⎦

⎤
⎢
⎣

⎡
10
31

⎥
⎦

⎤
⎢
⎣

⎡ −−
01
13

⎥
⎦

⎤
⎢
⎣

⎡−
10
01

⎥
⎦

⎤
⎢
⎣

⎡
......
......

etc.

20r eser voi r abs HPEC
September 20, 2006

Subsumes Classic Loop Transformations

for(i=0; i<N; i++)
for(j=0; j<N; j++)
S(i,j);

for(j=0; j<N; j++)
for(i=0; i<N; i++)
S(i,j);

for(i=N-1; i>=0; i--)
for(j=0; j<N; j++)
S(j,i);

for(i=0; i<N; i++)
for(j=α*i; j<N+α*i; j++)
S(i,j-α*i);

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

j
i

ji
01
10

),(θ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡−
=

j
i

ji
10
01

),(θ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

j
i

ji
1
01

),(
α

θ

for(i=0; i<α*N; i+=α)
for(j=0; j<N; j++)
S(i/α,j);

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

j
i

ji
10
0

),(
α

θ

permutation

reversal

skewing

scaling

unimodular

21r eser voi r abs HPEC
September 20, 2006

Loop Transformations as Scheduling

iteration space of a statement S(i,j)
j

i

22: ZZ →θ

t1

t2

Schedule θ maps iterations to multi-dimensional time

Loop transformations/synthesis mean generating code to execution iterations
of a loop in the lexicographicall order of time

A feasible schedule must preserve dependencies

22r eser voi r abs HPEC
September 20, 2006

Polyhedral Challenges

• Algorithms for solving the problems
– may be very expensive
– may not scale (can be super-exponential in time and space)
– may not exist (specific problem not studied in the literature)

• Power is a double-edged sword
– can find “all” parallelism
– can find infinite families of legal schedules
– must know what parallelism is best suited for target architecture

• Application of transformations is easy
– knowing when, where and why (or why not) to apply them can be much

more difficult to decide
– must decide based on the target architecture’s features and limitations

23r eser voi r abs HPEC
September 20, 2006

Specific Reservoir Innovations

• Parallelism extraction
– extensions to work of Lim and Lam, and others
– extensions deal with locality and communication minimization

• Local memory compaction
– rearranges data layout in local memory to improve memory usage
– extensions to the algorithms of Schreiber and Cronquist

• DMA optimization
– compute min-cost sets of DMA transfers
– extension of algorithms for generating efficient message passing by

Paek, et.al.
• Parametric tiling

– generality: operates on collections of imperfect loop nests
– find a best tiling, defined in terms of polynomial objective functions and

constraints, over a space of possible tile sizes
– considers re-use, memory footprint, etc.

24r eser voi r abs HPEC
September 20, 2006

R-Stream on Cell

25r eser voi r abs HPEC
September 20, 2006

PPE

Cell Architecture

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

EIB (204.8GB/s)

L2
512KB

L1
32KB PPU

25.6GB/s

51.2GB/s

51.2GB/s

IO
Controller MIC

RAM

25.6GB/s

25.6GB/s

25.6GB/s

25.6GB/s

IO

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

SPE

SPU

SIMD(4x)

256KB
LS

51.2GB/s

25.6GB/s

26r eser voi r abs HPEC
September 20, 2006

Kernel Codes

for (int i = 0; i < N; i++) {
C[i] = A[i] * A[i] + B[i] * B[i];

}

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

C[i][j] = 0;
for (int k = 0; j < N; j++) {

C[i][j] = C[i][j] + A[i][k] * B[k][j];
}

}
}

N=8*1024*1024

N=1024

Single precision floating point only

27r eser voi r abs HPEC
September 20, 2006

Vector Sum of Squares Results

float (* restrict A_local) __attribute__((aligned(128))) = ...;
float (* restrict B_local) __attribute__((aligned(128))) = ...;
float (* restrict C_local) __attribute__((aligned(128))) = ...;
for (int i = 0; i < N; i++) {
C_local[i] = A_local[i] * A_local[i] +

B_local[i] * B_local[i];
}

21.090.6618.21s2048yesyes4096

19.880.624.83s2048yesyes1024

18.150.575.29s2048noyes1024

17.080.535.62s2048yesno1024

10.380.329.25s2048nono1024

Bandwith
(GB/s)

GFlops/SPU/sTimeNPipelinedSIMDizedTrials

Memory bandwidth: 25.6GB/s peak, ~21GB/s sustainable

28r eser voi r abs HPEC
September 20, 2006

Matrix Multiply Results

• Not bandwidth bound; plenty of parallelism
• Key component to performance:

– excellent SIMDization on the SPUs
• Working on closing the gap between the HLC and LLC

– working with IBM; new version of their compiler “in the mail”
– anticipate results will achieve closer to 50% of peak

1.2712.55yesyes64

0.20478.5yesno64
1.2013.36noyes64

0.20279.4nono64

GFlops/SPU/sTimePipelinedSIMDimizedTrials

25.6 GFlops/SPU/s peak

29r eser voi r abs HPEC
September 20, 2006

Research Challenges

• Some architectures just now realizing silicon
– Much more experimentation needed
– What optimizations are needed? Which work best?

• Scalability: how big a problem can we map?
• What are the implications for parallel programming languages?
• How can we guide the programmer constructively?
• More work on optimization for the memory hierarchy
• How much performance do we sacrifice with layered

compilation?
– Need strategies to ameliorate this potential gap

30r eser voi r abs HPEC
September 20, 2006

Conclusion

• Investigation and experimentation with phased compilation
– PCA, Morphware Forum, SVM

• Compiler that can automatically
– find parallelism
– manage small scratchpad memories
– generate communications

• Advancement of polyhedral model
– improving published algorithms
– new algorithms and optimizations
– mapper uses polyhedral algorithms upon polyhedral representation

• Some initial results of applying polyhedral mapper on Cell
– working on closing the gaps between HLC and LLC

• Still more work to be done…

