

R-Stream: A Parametric High Level Compiler
Richard Lethin, Allen Leung, Benoit Meister and Eric Schweitz

{lethin, leunga, meister, schweitz}@reservoir.com
Reservoir Labs, Inc, New York, NY

R-Stream
R-Stream is a High Level Compiler being developed as part
of the DARPA IPTO Polymorphous Computer Architecture
(PCA) program. The compiler is targeted at the problem of
mapping embedded signal/knowledge processing
applications with high performance needs, as exemplified
by the Lincoln Labs Integrated Radar Tracker (IRT)
reference, to both polymorphous and commercial streaming
hardware platforms. These polymorphous streaming
architectures are exemplified by TRIPS (University of
Texas) and MONARCH (ISI/Raytheon) projects. Other
emerging commercial multi-core chips, such as IBM's Cell,
are also instances of on-chip distributed memory
multiprocessors that require explicit communication
between tiled computation kernels.

The Morphware Forum is an initiative under the PCA
program to develop standard mechanisms and tools for the
programming of PCAs. Within this framework, R-Stream
is an instance of the high-level compiler (HLC), a source-
to-source restructuring tool in a phased compilation system.

More specifically, R-Stream is an ANSI C compiler aimed
at producing high-level mapped code, i.e., C augmented
with mapping instructions. This is exemplified by the
Streaming Virtual Machine (SVM), which is a Morphware
supported interface between a HLC and a target-specific
low-level C compiler.

Internally, the version of R-Stream under development uses
a polyhedral model of the program and architecture, drawn
from academic work in advanced program representations.
The polyhedral model represents affine loops [1], data
references, schedules on parallel processors [2,3], data
layout [4], computations and data distribution across
multiple memories in a single unified mathematical
framework: multidimensional parametric polyhedra. The
approach subsumes many classic loop optimizations and
allows to extract more parallelism and to better handle
parameterized codes and architectures. In particular, it
enables coordinated optimizations that traditionally must be
made in a phased manner such as parallelization and data
layout for locality.

Recently, we have been experimenting with our mapper
technology on several kernel codes extracted from Ground
Moving Target Indicator radar (GMTI, the front half of the
IRT) and from Synthetic Aperture Rader (SAR), as well as
basic linear algebra algorithms.

Compiler Structure
An XML-structured document describing the target
machine is provided to R-Stream as an input parameter.

R-Stream uses an industrial-strength front-end to parse
sequential programs written in ANSI C with some
extensions. Mappable regions, i.e., regions that may contain
the appropriate parallelism, are then extracted and turned
into polyhedral form.

This polyhedral information is then analyzed and
manipulated in order to produce a mapping that includes the
scheduling and grouping of operations into tasks, the
placement of tasks and data onto different processors, the
identification of needed values, the compaction of values
needed in communication operations, and optimization of
those communication operations.
Once mapped, responsibility is given to the code generation
phase for producing the high-level output that can be
consumed by either a native/low-level compiler or,
potentially, a programmer who could use R-Stream as a
parallelism and locality extraction tool.
Polyhedral Representation
The polyhedral representation models coding practices
commonly found in high-performance applications in an
abstract and uniform mathematical object, a polyhedron.
Targeted codes consist of embedded static control loops
that show some regularity. In Fig. 1, we show how iteration
domains, array variable access patterns, and a schedule may
be represented using polyhedra.

Figure 1: Polyhedral Model in a Nutshell

Polyhedra can straightforwardly model nested loops whose
bounds are affine functions of the loop counters and other
variables that are loop constants, as well as array elements
accessed by such loops through multidimensional affine
access functions. This framework, which already allows
modeling many linear algebra and signaling processing
kernels, can be extended to handle more complex cases [5].
Moreover, input code may be pre-processed to better fit the
polyhedral model in cases when the original code is not
directly amenable to being modeled. (See [6] for instance.)
Reservoir Labs is also contributing to this field by

for (i=2; i<=M; i++)
 for (j=0; j<=N; j+=2)
 A[i,N-j] =
 C[i-2,4*i+j/2];
 for (j=i; j<=N; j++)
 B[i,N-j] = A[i,j+1];

0 0 0 0
0 1 0 1 0
0 0 0 0 1

1

i
i j

M
N

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0 0
0 1 0 0 1
0 0 0 0 1

1

i
j

M
N

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

Iteration domains

Variables and access

Affine schedules
determine

the execution order

AB
0 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 1

i
j

M
N

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

Dependence relations tie these components

{(i,j)|2≤i≤M,i≤j≤N}

extending the applicability of these techniques with its own
original research.

R-Stream is designed to use the polyhedral model to
perform the following tasks in the mapper:

• Identifying and extracting parallelism

• Forming tasks

• Loop transformations

• Locality optimization

• SIMD optimizations

• Data layout transformations

• DMA generation

• Communication optimizations

• Data distribution and processor mapping

Mapping to Cell
In recent work, we have begun exploring the use of our
mapper to restructure code for the IBM/Sony/Toshiba Cell
processor. A block diagram of the Cell processor
architecture is shown in Fig. 2.

Figure 2: Cell processor (diagram is © of IBM)

The Cell processor is able to achieve a theoretical
maximum of approximately 205GFLOPS. However, in
order to obtain near this level of raw number crunching
power requires some unique programming of the chip as a
whole. For example, the 8 SPEs and the PPE may take
advantage of a fairly coarse-level of parallelism; the SPEs
may be used to exploit another level of parallelism; and
finally, each individual SPE may internally exploit a very
fine-grained SIMD parallelism on long data words.

Clearly, an advanced framework that can detect parallelism
at many levels, optimize for locality, and produce parallel
code holds productivity advantages over programmers that
can be overwhelmed when managing this complexity by
hand.

Recent Results
We are experimenting with our polyhedral mapper to
produce code for the Cell processor. This code, which
exposes parallelism and (DMA) communications, can then
be hand-tuned or compiled by the Cell “low level”
compilers (namely, gcc and xlc). This also allows us to
study the interaction between R-Stream and the low-level
compiler. The output of our code generator is shown for a
matrix multiply kernel in Fig. 3.

Figure 3: Cell output code

Related Work
IBM researchers are working on the Octopiler [7], a
compiler that targets the Cell processor and performs
automatic parallelization. This compiler is similar to ours,
in the sense that it also tries to extract parallelism.
However, R-Stream differs from the Octopiler in that R-
Stream is using a unique, higher-level kind of modeling to
drive its automatic parallelization. Furthermore, while the
Octopiler target is fixed (the Cell architecture exclusively),
R-Stream is targeting a parametric parallel machine.

References
[1] C. Ancourt, F. Irigoin, “Scanning polyhedra with do loops”,

Proceedings of the third ACM SIGPLAN symposium on
Principles and practice of parallel programming, 1991

[2] P. Feautrier, “Some efficient solutions to the affine scheduling
problem”, International Journal of Parallel Programming,
21(5), 1992

[3] A.W. Lim, M.S. Lam, “Maximizing parallelism and
minimizing synchronization with affine partitions”, Parallel
Computing, 24(3-4), 1998

[4] V. Loechner, B. Meister and Ph. Clauss, “Precise data locality
of nested loops”, The Journal of Supercomputing, 21(1), 2002

[5] M. Geigl, “Parallelization of loop nests with general Bounds in
the Polyhedron Model”, M.Sc. thesis, Universisaet
Passau,1997

[6] J. Sheldon, W. Lee, B. Greenwald, and S. Amarasinghe,
Proceedings of the '01 Languages and Compilers for Parallel
Computing (LCPC), 2001.

[7] A. E. Eichenberger et al., “Using advanced compiler
technology to exploit the performance of the Cell Broadband
Engine architecture,” IBM Systems Journal, 45(1), 2006.

