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R-Stream 
R-Stream is a High Level Compiler being developed as part 
of the DARPA IPTO Polymorphous Computer Architecture 
(PCA) program.  The compiler is targeted at the problem of 
mapping embedded signal/knowledge processing 
applications with high performance needs, as exemplified 
by the Lincoln Labs Integrated Radar Tracker (IRT) 
reference, to both polymorphous and commercial streaming 
hardware platforms. These polymorphous streaming 
architectures are exemplified by TRIPS (University of 
Texas) and MONARCH (ISI/Raytheon) projects. Other 
emerging commercial multi-core chips, such as IBM's Cell, 
are also instances of on-chip distributed memory 
multiprocessors that require explicit communication 
between tiled computation kernels. 

The Morphware Forum is an initiative under the PCA 
program to develop standard mechanisms and tools for the 
programming of PCAs.  Within this framework, R-Stream 
is an instance of the high-level compiler (HLC), a source-
to-source restructuring tool in a phased compilation system.   

More specifically, R-Stream is an ANSI C compiler aimed 
at producing high-level mapped code, i.e., C augmented 
with mapping instructions. This is exemplified by the 
Streaming Virtual Machine (SVM), which is a Morphware 
supported interface between a HLC and a target-specific 
low-level C compiler. 

Internally, the version of R-Stream under development uses 
a polyhedral model of the program and architecture, drawn 
from academic work in advanced program representations. 
The polyhedral model represents affine loops [1], data 
references, schedules on parallel processors [2,3], data 
layout [4], computations and data distribution across 
multiple memories in a single unified mathematical 
framework: multidimensional parametric polyhedra. The 
approach subsumes many classic loop optimizations and 
allows to extract more parallelism and to better handle 
parameterized codes and architectures. In particular, it 
enables coordinated optimizations that traditionally must be 
made in a phased manner such as parallelization and data 
layout for locality. 

Recently, we have been experimenting with our mapper 
technology on several kernel codes extracted from Ground 
Moving Target Indicator radar (GMTI, the front half of the 
IRT) and from Synthetic Aperture Rader (SAR), as well as 
basic linear algebra algorithms. 

Compiler Structure 
An XML-structured document describing the target 
machine is provided to R-Stream as an input parameter.  

R-Stream uses an industrial-strength front-end to parse 
sequential programs written in ANSI C with some 
extensions. Mappable regions, i.e., regions that may contain 
the appropriate parallelism, are then extracted and turned 
into polyhedral form.  

This polyhedral information is then analyzed and 
manipulated in order to produce a mapping that includes the 
scheduling and grouping of operations into tasks, the 
placement of tasks and data onto different processors, the 
identification of needed values, the compaction of values 
needed in communication operations, and optimization of 
those communication operations. 
Once mapped, responsibility is given to the code generation 
phase for producing the high-level output that can be 
consumed by either a native/low-level compiler or, 
potentially, a programmer who could use R-Stream as a 
parallelism and locality extraction tool. 
Polyhedral Representation 
The polyhedral representation models coding practices 
commonly found in high-performance applications in an 
abstract and uniform mathematical object, a polyhedron. 
Targeted codes consist of embedded static control loops 
that show some regularity. In Fig. 1, we show how iteration 
domains, array variable access patterns, and a schedule may 
be represented using polyhedra. 

 
Figure 1: Polyhedral Model in a Nutshell 

Polyhedra can straightforwardly model nested loops whose 
bounds are affine functions of the loop counters and other 
variables that are loop constants, as well as array elements 
accessed by such loops through multidimensional affine 
access functions. This framework, which already allows 
modeling many linear algebra and signaling processing 
kernels, can be extended to handle more complex cases [5]. 
Moreover, input code may be pre-processed to better fit the 
polyhedral model in cases when the original code is not 
directly amenable to being modeled. (See [6] for instance.) 
Reservoir Labs is also contributing to this field by 

for (i=2; i<=M; i++) 
   for (j=0; j<=N; j+=2) 
      A[i,N-j] =  
       C[i-2,4*i+j/2]; 
   for (j=i; j<=N; j++)  
      B[i,N-j] = A[i,j+1]; 
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Dependence relations tie these components 

{(i,j)|2≤i≤M,i≤j≤N}



 

extending the applicability of these techniques with its own 
original research. 

R-Stream is designed to use the polyhedral model to 
perform the following tasks in the mapper: 

• Identifying and extracting parallelism 

• Forming tasks 

• Loop transformations 

• Locality optimization 

• SIMD optimizations 

• Data layout transformations 

• DMA generation 

• Communication optimizations 

• Data distribution and processor mapping 

Mapping to Cell 
In recent work, we have begun exploring the use of our 
mapper to restructure code for the IBM/Sony/Toshiba Cell 
processor. A block diagram of the Cell processor 
architecture is shown in Fig. 2. 

 
Figure 2: Cell processor (diagram is © of IBM) 

The Cell processor is able to achieve a theoretical 
maximum of approximately 205GFLOPS.  However, in 
order to obtain near this level of raw number crunching 
power requires some unique programming of the chip as a 
whole.  For example, the 8 SPEs and the PPE may take 
advantage of a fairly coarse-level of parallelism; the SPEs 
may be used to exploit another level of parallelism; and 
finally, each individual SPE may internally exploit a very 
fine-grained SIMD parallelism on long data words. 

Clearly, an advanced framework that can detect parallelism 
at many levels, optimize for locality, and produce parallel 
code holds productivity advantages over programmers that 
can be overwhelmed when managing this complexity by 
hand. 

Recent Results 
We are experimenting with our polyhedral mapper to 
produce code for the Cell processor.  This code, which 
exposes parallelism and (DMA) communications, can then 
be hand-tuned or compiled by the Cell “low level” 
compilers (namely, gcc and xlc). This also allows us to 
study the interaction between R-Stream and the low-level 
compiler. The output of our code generator is shown for a 
matrix multiply kernel in Fig. 3.  

 
Figure 3: Cell output code 

Related Work 
IBM researchers are working on the Octopiler [7], a 
compiler that targets the Cell processor and performs 
automatic parallelization.  This compiler is similar to ours, 
in the sense that it also tries to extract parallelism. 
However, R-Stream differs from the Octopiler in that R-
Stream is using a unique, higher-level kind of modeling to 
drive its automatic parallelization. Furthermore, while the 
Octopiler target is fixed (the Cell architecture exclusively), 
R-Stream is targeting a parametric parallel machine. 
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