

“Close-to-Concept Coding for Configurable Computing”

Henk Spaanenburg, Joe Thompson
Advanced Principles Group, Inc.

1045 Elm Street, Suite 201, Manchester, New Hampshire 03101

Abstract:
Breakthroughs in Field-Programmable Gate-Array (FPGA) technology can provide orders of
magnitude improvements in computing performance, power, and cost over current state-of-the-
art super-computing systems. This, in turn, has increased the need for programming tools1 to
support the development of performance sensitive applications. A visualized macro-parallel-
pipelines model of computation has been identified by APG to be extremely useful for
transparent technology update/upgrade, as well as for performance in embedded-super-
computing-class signal processing systems. We will describe an approach to design and
develop the appropriate visual (close-to-concept) programming interface to “virtual”
Programmable Signal Processing (PSP) middleware. The parameterized “virtual” PSP
architecture will be mapped effectively (once) into the underlying FPGA technology. The
system application programmer will, in essence, only see a graphical close-to-concept
interface to the “virtual” PSP middleware. This approach will result in a more
conventional, and therefore more productive, signal processing programming environment
for embedded super-computers.

Presentation Overview:

FPGA-Based Embedded High Performance Computing. The introduction of Field-
Programmable Gate Arrays (FPGAs) during Sony Corporation’s Dr. Tsugio Makimoto’s defined
third wave makes “softer” flexible hardware possible. Makimoto’s third wave is triggered by the
use of reconfigurable hardware as a basis for new computational paradigms2. Reconfigurable
computing has come of age for High-Performance Computing (HPC). SRC Computers with
their MAPstation, Cray (after the acquisition of OctigaBay Systems Corp.) with their XD-1, and
SGI with their Reconfigurable Application-Specific Computing (RASC) technology have
entered the HPC “Super-Computing” domain. APG has applied FPGA technology in the
development of embedded super-computers based on its DOE-sponsored Halcyon RCB.

Programmable Signal Processor (PSP) Architecture. Previous experience in developing a
Programmable Signal Processor (PSP)3 has shown that for signal and image processing a macro-
parallel-pipelines organization is sufficient and highly effective. The original GE PSP
implementation utilized board-level processing elements in a parallel pipelines architecture to
provide high throughput, real-time signal processing for complex multimode radar systems. The
PSP was unique in its reliability aspects and visual programming approaches. APG is updating
the PSP concept in light of dramatic functional density advances since the 1980’s.

1 Morris, K., “Saving Supercomputing with FPGAs, What We’ll Do When We Hit the Wall”,
FPGA and Structured ASIC Journal (www.fpgajournal.com), November 22, 2005
2 Manners, D., T. Makimoto, “Living with the Chip”, Chapman & Hall, 1995
3 H. Spaanenburg, "PSP/SVP - An Advanced VLSI Programmable Systolic Signal Processor",
IEEE International Conference on Communications, June 1986 (Invited paper).

http://www.fpgajournal.com/

Virtual PSP Architecture Middleware. In the specific case of the “virtual” PSP, the selected
(macro-parallel-pipelines) computational architecture represents a form of virtual processor
architecture middleware into which the signal processing system application will be mapped.
Most of the APG developments will take place in performing the highly efficient mappings of a
parallel pipelines model of computation (MOC) as a virtual processing architecture onto the
selected underlying FPGAs. The APG’s “virtual” PSP middleware approach will produce an
effective implementation of an architectural configuration4 that will lend itself perfectly to
embedded super-computing processing realizations. In addition, it will also be in line
(updateable, upgradeable) and compatible with most FPGA-based device architectures.

Visual Flow Programming. By graphically (see below) representing the data flow through a
parallel pipelines system, by indicating the selected addressing patterns for the respective buffers
and by indicating accesses to corner-turn memories, etc., we are developing a programming
environment for state-of-the-art FPGA-based high performance super-computers that is
conceptually closer to traditional signal processing flows. This visualization approach will be
more manageable than current C-based programming approaches where most of the data flow
information has been obfuscated. From a system development point-of-view, we have removed
the inefficiencies of C-based FPGA programming by providing a much simpler middleware
interface, and by hiding the act of careful mapping onto FPGAs of the “virtual” PSP architecture.

Address Pattern #1
Address Pattern #2
Address Pattern #3
Address Pattern #4

Function

Structural
Mapping
to FPGA

(parameterized)

Functional Mapping
to Architecture

Virtual Architecture by Vendor

AP #1

AP #2

AP #3

AP #4

Function

Selecting Address Patterns
and Function

Technical Program Areas of Interest:

• Automated Design Tools
• Advanced Middleware and Software Technology
• Mapping and Scheduling of Parallel and Real-Time Applications
• Signal Processing Techniques
• ASIC and FPGA Advances
• Parallel and Distributed System Architectures

4 Ennis, W.G., H. Spaanenburg, “High Performance Programmable Signal Processors”,
NAECON’85, May 1985

