
High Performance Low Density Parity Check and Turbo Decoding FPGA
Implementation

Ryan Shoup
MIT Lincoln Laboratory

Email: Shoup@LL.MIT.EDU

Introduction1

In the recent years, near-capacity approaching error
correction encoding techniques including turbo codes [1]
and Low Density Parity Check (LDPC) codes [2] have
gained considerable attention in the open literature. These
encoding techniques are typically discussed as being
decoded in an iterative manner resulting in near-capacity
performance.

The difficulty with these near-capacity codes is the need to
perform multiple iterations, limiting the throughput of the
decoder. This paper discusses two iterative decoders, a 64-
ary orthogonal Serial Concatenated Convolutional Code
(SCCC) Turbo decoder and a Low Density Parity Check
(LDPC) decoder. These two iterative decoders were
designed for FPGA implementation. Increasing the
throughput of the decoder implementations was of primary
concern.

64-PPM Turbo Decoder
A turbo decoder was designed to decode an optical signal
transmitted using 64-PPM modulation. The transmitted
data was encoded and then mapped to a 64-PPM symbol as
shown in Figure 1.

Data Turbo

Encode
64-PPM

Map
PPM
Symbol

Figure 1: Turbo Encoding and 64-PPM Mapping

Inner
SISO

Decoder

Depermute

Outer
SISO

Decoder

Permute

Decoded
Data

Photon
Counts

Scale

Figure 2: 64-PPM Turbo Decoding

In Figure 1, information bearing data bits are turbo encoded
using a SCCC code. The rate of the outer code was ½ with
generator polynomials of {5,7}octal. The inner code was a
simple rate-1 accumulator. Six outputs of the inner encoder
are then mapped to 1 of 64 PPM modulation symbols and
transmitted through the optical channel.

This work was sponsored by NASA under contract FA8721-05-C-0002.
Opinions, interpretations, conclusions and recommendations are those of
the authors, and are not necessarily endorsed by the United States
Government.

The 64-PPM turbo decoder is diagrammed in Figure 2.

The input to the turbo decoder consisted of 64 photon
counts per 64-PPM symbol interval. The output of the
turbo decoder represented the decoded data.

The first optimization used to improve the turbo decoder
was to employ the well-known Max log Map algorithm
coupled with scaling of the outer Soft Input Soft Output
(SISO) decoder. Scaling of the outputs is known to
improve the performance of Max log Map decoding
algorithms for standard binary/quaternary modulation
schemes [3]. The application of the scaling factor for 64-
PPM modulation also seemed to produce desirable results.
Figure 3 shows the results of applying the computationally
intensive MAP algorithm compared with the less
computationally intensive Max Log Map with scaling
algorithm, which was implemented on an FPGA. The
performance penalty of 0.2 dB trades well for a significant
improvement in throughput.

0 0.1 0.2 0.3 0.4
-2

0

2

4

6

Background photons per slot

S
ig

na
l p

ho
to

ns
 p

er
 s

lo
t (

dB
)

Capacity
Hardware Max Log Map
Log Map

Figure 3: Max Log Map w/ Scaling vs Log Map

0 1 2 3 4 5 6 7 8 9 101112
0

0.1

0.2

0.3

0.4

0.5

Iterations

R
el

at
iv

e
Fr

eq
ue

nc
y

Ns = 3.56
Nb = 0.2

Figure 4: Turbo Decoder Iteration Histogram

A second optimization that can be used to improve the
performance of the turbo decoder is to employ a variable
number of iterations per codeword. As shown in Figure 4,
the number of iterations needed for the turbo decoder to
decode a particular codeword is variable. The hardware

decoder associated with the results shown in Figure 3 used
a fixed number of iterations of 12. By terminating the
decoding process when the codeword is finished decoding,
the average throughput of the decoder more than doubles.
The amount of additional memory needed turns out to
relatively small. The ability to pool 10 codewords
essentially results in the performance shown in Figure 3
while doubling the throughput of the decoder.

LDPC Decoder
A decoder was developed to decode a (8176,7154) quasi-
cyclic code. The details of a quasi-cyclic code and the
associated encoding process are not discussed here but can
be found in [4]. The corresponding LDPC decoder, which
was implemented on an FPGA, is shown in block diagram
form in Figure 5.

“Apriori”
Probabilities

Component
ML Decoder
(Parity)

Component
ML Decoder

(SISO)

Scale

Decoded
Bits

Observation

Figure 5: Max Log Map w/ Scaling vs Log Map

All of the optimizations discussed above for the 64-PPM
turbo decoder are also applicable for the LDPC decoder.
The “apriori” probabilities are scaled in essentially, the
same manner as done for the turbo decoder. The
performance improvement due to the scaling of the apriori
probabilities is shown in Figure 6. Additionally, the max
log map algorithm is employed in place of a map algorithm
at a negligible loss in performance. Furthermore, the
iteration histogram at the waterfall region of the bit error
rate curve allows for pooling of the codewords to result in a
doubling of the system throughput. The iteration histogram
is provided in Figure 7.

A final optimization employed, suitable for 8-PSK,
modulation is to choose a constellation mapping that results
in the best BER vs EB/N

B 0 performance for the LDPC
decoder. A non-Grey constellation mapping resulted in a
decoding performance improvement shown in .
Also in the figure, the impact of scaling of the “apriori”
probabilities is shown.

Figure 8

Summary
A 64-PPM turbo decoder and LDPC decoder were
implemented on an FPGA. Design optimization focused on
throughput. These optimizations resulted in a throughput
increase while maintaining decoder performance to 1.0 dB
from capacity for the 64-PPM turbo decoder and 1.3 dB
from capacity for the LDPC decoder for both QPSK and 8-
PSK modulation.

2.5 3 3.5 4

10
-6

10
-4

10
-2

EB/N0

B
it

E
rro

r R
at

e

Scale = 1.0
Scale = 1.5
Scale = 2.0

Figure 6: LDPC Decoder Performance with Scaling

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Iterations

R
el

at
iv

e
Fr

eq
ue

nc
y

EB/N0 = 3.95 dB

Figure 7: LDPC Decoder Iteration Histogram

6 7 8 9
10

-6

10
-4

10
-2

EB/N0

B
it

E
rro

r R
at

e

Scale = 100
Scale = 200
Grey, Scale = 100
Scale = 125

Figure 8: LDPC 8-PSK Performance

References
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near

Shannon Limit Error-Correcting Coding and Decoding:
Turbo-Codes,” ICC ’93, Geneva, Switzerland, May 1993.

[2] R. G. Gallagher, “Low Density Parity Check Codes,” IRE
Transactions on Information Theory, Vol 8, No 1, Jan 1962.

[3] J. Vogt and A. Finger , “Improving the max-log-MAP turbo
decoder,” Electronics Letters, Vol. 36 No. 23., Nov 2000.

[4] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient
Encoding of Quasi-Cyclic Low-Density Parity-Check
Codes,” IEEE Transactions on Communications, Vol. 54,
No. 1, Jan 2006.

