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Introduction1

In the recent years, near-capacity approaching error 
correction encoding techniques including turbo codes [1] 
and Low Density Parity Check (LDPC) codes [2] have 
gained considerable attention in the open literature.  These 
encoding techniques are typically discussed as being 
decoded in an iterative manner resulting in near-capacity 
performance.   
 
The difficulty with these near-capacity codes is the need to 
perform multiple iterations, limiting the throughput of the 
decoder.  This paper discusses two iterative decoders, a 64-
ary orthogonal Serial Concatenated Convolutional Code 
(SCCC) Turbo decoder and a Low Density Parity Check 
(LDPC) decoder.  These two iterative decoders were 
designed for FPGA implementation.  Increasing the 
throughput of the decoder implementations was of primary 
concern. 
 
64-PPM Turbo Decoder 
A turbo decoder was designed to decode an optical signal 
transmitted using 64-PPM modulation.  The transmitted 
data was encoded and then mapped to a 64-PPM symbol as 
shown in Figure 1. 
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Figure 1: Turbo Encoding and 64-PPM Mapping 
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Figure 2: 64-PPM Turbo Decoding 

In Figure 1, information bearing data bits are turbo encoded 
using a SCCC code.  The rate of the outer code was ½ with 
generator polynomials of {5,7}octal.  The inner code was a 
simple rate-1 accumulator.  Six outputs of the inner encoder 
are then mapped to 1 of 64 PPM modulation symbols and 
transmitted through the optical channel. 
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The 64-PPM turbo decoder is diagrammed in Figure 2. 

The input to the turbo decoder consisted of 64 photon 
counts per 64-PPM symbol interval.  The output of the 
turbo decoder represented the decoded data. 

The first optimization used to improve the turbo decoder 
was to employ the well-known Max log Map algorithm 
coupled with scaling of the outer Soft Input Soft Output 
(SISO) decoder.  Scaling of the outputs is known to 
improve the performance of Max log Map decoding 
algorithms for standard binary/quaternary modulation 
schemes [3].  The application of the scaling factor for 64-
PPM modulation also seemed to produce desirable results.  
Figure 3 shows the results of applying the computationally 
intensive MAP algorithm compared with the less 
computationally intensive Max Log Map with scaling 
algorithm, which was implemented on an FPGA.  The 
performance penalty of 0.2 dB trades well for a significant 
improvement in throughput. 
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Figure 3: Max Log Map w/ Scaling vs Log Map 
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Figure 4: Turbo Decoder Iteration Histogram 

A second optimization that can be used to improve the 
performance of the turbo decoder is to employ a variable 
number of iterations per codeword.  As shown in Figure 4, 
the number of iterations needed for the turbo decoder to 
decode a particular codeword is variable.  The hardware 



decoder associated with the results shown in Figure 3 used 
a fixed number of iterations of 12.  By terminating the 
decoding process when the codeword is finished decoding, 
the average throughput of the decoder more than doubles.  
The amount of additional memory needed turns out to 
relatively small.  The ability to pool 10 codewords 
essentially results in the performance shown in Figure 3 
while doubling the throughput of the decoder.   

LDPC Decoder 
A decoder was developed to decode a (8176,7154) quasi- 
cyclic code.  The details of a quasi-cyclic code and the 
associated encoding process are not discussed here but can 
be found in [4].  The corresponding LDPC decoder, which 
was implemented on an FPGA, is shown in block diagram 
form in Figure 5. 
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Figure 5: Max Log Map w/ Scaling vs Log Map 

All of the optimizations discussed above for the 64-PPM 
turbo decoder are also applicable for the LDPC decoder.  
The “apriori” probabilities are scaled in essentially, the 
same manner as done for the turbo decoder.  The 
performance improvement due to the scaling of the apriori 
probabilities is shown in Figure 6.  Additionally, the max 
log map algorithm is employed in place of a map algorithm 
at a negligible loss in performance.  Furthermore, the 
iteration histogram at the waterfall region of the bit error 
rate curve allows for pooling of the codewords to result in a 
doubling of the system throughput.  The iteration histogram 
is provided in Figure 7.  

A final optimization employed, suitable for 8-PSK, 
modulation is to choose a constellation mapping that results 
in the best BER vs EB/N

 

B 0 performance for the LDPC 
decoder.  A non-Grey constellation mapping resulted in a 
decoding performance improvement shown in .  
Also in the figure, the impact of scaling of the “apriori” 
probabilities is shown.   

Figure 8

Summary 
A 64-PPM turbo decoder and LDPC decoder were 
implemented on an FPGA.  Design optimization focused on 
throughput.  These optimizations resulted in a throughput 
increase while maintaining decoder performance to 1.0 dB 
from capacity for the 64-PPM turbo decoder and 1.3 dB 
from capacity for the LDPC decoder for both QPSK and 8-
PSK modulation.  
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Figure 6: LDPC Decoder Performance with Scaling 
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Figure 7: LDPC Decoder Iteration Histogram 
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Figure 8: LDPC 8-PSK Performance 
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