
 

Running Simulink-based Designs on SRC-6 
David Meixner, Volodymyr Kindratenko§, David Pointer 

National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign (UIUC) 
E-mail addresses: dmeixner@uiuc.edu, kindr@ncsa.uiuc.edu, pointer@ncsa.uiuc.edu 

 
 
Introduction 1 
This paper provides details on how to program an SRC-6 
reconfigurable computer [1] using MathWorks Simulink® 
[2] with Xilinx System Generator™ for DSP [3] and Xilinx 
Blockset [4].  SRC-6 is programmed in SRC’s MAP C 
programming language [5].  Code development on the 
SRC-6 platform closely resembles code development on a 
conventional microprocessor-based system, except for 
explicit code to support data transfer between the system 
memory and FPGA-controlled memory.  SRC’s Carte™ 
development environment [5] allows the developer to bring 
in third party subroutines, called macros, that can be used to 
extend the functionality of the original language.  These 
macros are typically implemented in Verilog Hardware 
Description Language (HDL) and are brought into the MAP 
C program via a configuration file that defines the interface 
between the macros and MAP C language.  We propose a 
method of using the Verilog source for SRC macros 
generated from the MathWork’s Simulink-based designs. 

The ability to introduce Simulink-based designs into the 
Carte programming environment opens up new possibilities 
in programming the SRC-6 system.  Thus, one can explore 
system-level designs that use FPGA resources (e.g., 
BRAM) directly.  One can also use IP cores, such as FFT 
and CORDIC algorithms, provided by Xilinx without the 
need to re-write them in MAP C.  Another advantage in 
using Simulink-based designs is the ability to use fixed 
point arithmetic and define arbitrary sized data types, which 
is not directly available in the MAP C environment.  The 
latter ability may lead to reduced FPGA resources 
utilization as one can avoid the need to use larger numerical 
types for problems that require a reduced numerical range. 

Simulink model design 
The Simulink model one wishes to incorporate into SRC-
6’s Carte framework should be created using the Xilinx 
Blockset for Simulink.  Figure 1 shows a simple Simulink 
example which takes three inputs: a, b, and c, and outputs 
q=(a+b)*c.  For this example, all signals have a bit width 
of 40 and a binary point of 30.  The input and output ports 
are 'gateway in' and 'gateway out' blocks, respectively.  
They should be labeled in lowercase letters using the same 
names as the variables to be used in the MAP C code.  Note 
that Xilinx System Generator will convert all variables to 
lowercase.  The 'gateway in' blocks also allow specification 
of the bit width and binary point of the inputs; more on this 
follows. 

                                                 
§corresponding author 

 
Figure 1: Simple Simulink Example, addmult.mdl. 

The next step is to set up and run the System Generator.  Its 
parameters should be set up as follows: 

• Compilation Type: HDL Netlist 
• Part: the FPGA to be used, e.g., Virtex2 xc2v6000-

4ff1517 for MAPC 
• Target Directory: the directory where the Verilog files 

will be output 
• Hardware Description Language: Verilog 
• FPGA Clock period (ns): 10 

Once the model generation is complete, several files will be 
created (here <design> is the name of the model): 

• <design>_files.v – contains most of the HDL for the 
design. 

• <design>_clk_wrapper.v – an HDL wrapper that drives 
clocks and clock enables. 

• conv_pkg.v – contains constants and functions used by 
<design>_fils.v. 

• .edn files – implementation of the parts of the design. 

In the above example, the following files were produced: 
addmult_files.v, addmult_clk_wrapper.v, conv_pkg.v, 
adder_subtracter_virtex2_7_0_84f1dba84ee809b9.edn, and 
multiplier_virtex2_7_0_b018b3a1b259a550.edn.  These 
files need to be copied into the macro directory of the MAP 
C implementation. 

MAP C design 
First, <design>_clk_wrapper.v file needs to be modified to 
include <deisgn>_files.v in addition to conv_pkg.v: 

--System Generator code here-- 

`include "conv_pkg.v" 
`include "addmult_files.v" /* this is the line that was 
added */ 

module addmult_clk_wrapper (a, b, c, ce, ce_clr, clk, q); 

--System Generator code here-- 



 

Next, a black box definition for the design is created.  It 
includes the inputs and outputs defined in the Simulink 
model, as well as the signals ce, ce_clr, and clk, created by 
the System Generator.  If the design does not have any 
delays, the signals ce, ce_clr, and clk will not be generated, 
and should therefore not be included.  For this example, the 
multiplier has a delay of 5, so the clock signals are 
generated.  The black box definition appears as follows 
(remember that we are using 40-bit fixed point numbers): 

module addmult_clk_wrapper (a, b, c, ce, ce_clr, clk, q); 
    input [39:0] a; 
    input [39:0] b; 
    input [39:0] c; 
    input ce; 
    input ce_clr; 
    input clk; 
    output [39:0] q; 
endmodule 

The next step is to create the info file.  This file links the 
operators and calls from the source program to macros and 
signal names in the HDL code.  Note that the inputs and 
outputs are 64-bits in the source code, but we only use the 
bottom 40-bits in our HDL code.  The clk signal should 
always be mapped to CLOCK.  Lastly, the debug function 
performs the same operation as our Verilog code, except the 
result is shifted 20 bits to the right as is required for proper 
fixed point multiplication.  The resultant info file is as 
follows: 

BEGIN_DEF "addmult" 
    MACRO = "addmult_clk_wrapper"; 
    STATEFUL = NO; 
    EXTERNAL = NO; 
    PIPELINED = YES; 
    LATENCY = 5; 

    INPUTS = 3: 
      I0 = INT 64 BITS (a[39:0])  // explicit input 
      I1 = INT 64 BITS (b[39:0])  // explicit input 
      I2 = INT 64 BITS (c[39:0])  // explicit input 
      ; 

    OUTPUTS = 1: 
      O0 = INT 64 BITS (q[39:0])  // explicit output 
      ; 

    IN_SIGNAL : 1 BITS "ce"     = "1'b1"; 
    IN_SIGNAL : 1 BITS "ce_clr" = "1'b0"; 
    IN_SIGNAL : 1 BITS "clk"    = "CLOCK"; 

    DEBUG_HEADER = # 
        void addmult__dbg (long long v0, long long v1, long 
long v2, long long *res); 
    #; 

    DEBUG_FUNC = # 
        void addmult__dbg (long long v0, long long v1, long 
long v2, long long *res) { *res = (v0+v1)*v2 >> 20; } 
    #; 

END_DEF 

Finally, we add the path for <design>_clk_wrapper.v to the 
MACROS line of the Makefile.  For this example, the line 
would read: 

MACROS = macros/addmult_clk_wrapper.v 

Now the resulting macro can be called from MAP C code:  

addmult(a, b, c, &q); 

Numerical conversion 
Since Simulink performs all calculations with fixed point 
arithmetic, floating point numbers must be converted to 
fixed point representation in order to take advantage of 
variable resolution.  This conversion can occur either on the 
microprocessor side before the data is transferred from the 
main memory to the MAP, or on the MAP before the data is 
used by the Simulink-based design.  We have implemented 
subroutines both in C for the execution in the 
microprocessor-based code and in MAP C for the inclusion 
in the MAP’s algorithm implementation. 

When converting between floating point and fixed point 
numerical representations, there can be a loss of numerical 
resolution.  The size and fractional precision of the fixed 
point numbers determine its precision, so a higher precision 
requires a larger size.  This is a tradeoff that must be taken 
into consideration by the programmer. 

Conclusions and future work 
We have demonstrated how a Simulink-based design 
created with the help of Xilinx System Generator and 
Xilinx Blockset can be integrated with the native SRC’s 
MAP C code.  The Simulink example shown in Figure 1 
was tested from within a MAP C code and was found to 
execute correctly.  We are now in the process of testing 
more complex Simulink-based designs, such as FIR filter 
and FFT.  Our goal is to enable a rapid development and 
integration of Simulink-based DSP models on SRC’s 
Compact MAP Processor [6]. 

Acknowledgements 
This work was funded by the National Science Foundation 
grant SCI 05-25308.  We would like to thank Jon 
Huppenthal, David Caliga, Dan Poznanovic, and Jeff 
Hammes, all from SRC Computers Inc., for their help and 
support with SRC-6 system.  Special thanks to Trish Barker 
from NCSA’s Office of Public Affairs for help in preparing 
this publication. 

References 
[1] SRC Computers Inc., Colorado Springs, CO, SRC Systems 

and Servers Datasheet, 2005. 
[2] http://www.mathworks.com/products/simulink/ 
[3] http://www.xilinx.com/ise/optional_prod/system_generator.htm 
[4] http://www.xilinx.com/products/software/sysgen/blockset.htm 
[5] SRC Computers Inc., Colorado Springs, CO, SRC C 

Programming Environment v 2.1 Guide, 2005. 
[6] SRC Computers Inc., Colorado Springs, CO, Portable 

MAPstation™ Datasheet, 2005. 


