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Introduction
An FPGA implementation of a block floating point (BFP), 
streaming, 256-point FFT is described as an example of a 
new class of parallel FFT architectures that can provide 
better performance and functionality than commercially 
available pipelined FFTs.  It is based on a row/column 
factorization of the discreet Fourier transform (DFT) 
coefficient matrix along with an index remapping that 
converts the direct transform into structured sets of 
arithmetically simple 4-point transforms that are computed 
on a systolic array [1].  
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The index remapping starts with the DFT defined as 
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NW e .  If N can be factored 
as 14N N=  (“base-4” form) with N1 divisible by 4, then 
using the reindexings 1 1 2= +n n N n  and 1 1 2= +k k N k  
with 1 10,1, , 1= −Ln N , 1 10,1, , 1= −Lk N , 

2 0,1, 2,3n = , 2 0,1,2,3k = , then Z can be obtained from the 
matrix equations 
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where WM is an 1 1xN N matrix with elements 
1 1

1 1[ , ]= n k
M NW k n W ,  CM1 is an 1 x 4N  coefficient matrix 

with elements 2 1
1 1 2 4[ , ] n k

MC k n W= , Xb is an 14 x N matrix 
with elements 2 1 1 1 2[ , ] ( )= +bX n n X n N n ,  CM2 is a 14 x N  
coefficient matrix with elements 1 2

2 2 1 4[ , ] n k
MC k n W= , Zb is 

an 14 x N  matrix containing the transform outputs 

2 1 1 2 1[ , ] ( )= +bZ k k Z k k N , and “• ” means element-by-
element multiply.  
 
The computational advantages of the manipulation leading 
to the matrix algorithm form (1) are evident when 
compared to the traditional direct form Z CX= .  First the 

matrix products 1MC X  and 2M
t
bC Y  involve only 

exchanges of real and imaginary parts plus additions 
because the elements of 1MC  and 2MC contain only 1± or 

j± , whereas the product CX requires complex 
multiplications.  Also, the size of the coefficient matrix 

MW  in (1) is ( / 4) ( / 4)N N×  vs. the N N× size of C ; 
consequently the number of overall direct multiplications 
is reduced by a factor of x16 compared to the direct form 
on which past systolic FFT implementations are based.  
Note that distribution of the elements in 1MC and 2MC  
does not impose significant bandwidth requirements 
because full complex numbers are not used.  More details 
are provided in [1]. 
 
Architecture 

The base-4 circuit design described here (others are 
possible) contains two separate 1 4N x  systolic adder 

arrays that compute the matrix products 1MC X  and 

2M
t
bC Y and a single 1N element linear array in between 

the two to do the complex multiplies by MW .  The single 
biggest drawback to past use of systolic arrays has been 
the substantial arithmetic hardware that is required because 
systolic approaches use a number of complex multipliers 
equal to the size of the transform.  Thus, a 256-point DFT 
would require 256 complex multipliers, compared to only 
4 complex multipliers used in a base-4 implementation. 
 
Compared to traditional pipelined FFTs, the base-4 
architecture possesses the following advantages: 

• It can compute the DFT for any N-point sequence 
divisible by 256.  In contrast traditional FFT circuits 
require N to be a power of two, which limits the 
number of reachable values of N and their spacing 
uniformity. 

• It uses fewer clock cycles per transform. The number 
of clock cycles per DFT is ≈ / 2 4 40N N+ +  
compared to N for a typical pipeline FFT. 

• Higher clock rates are possible  because  
o the circuit consists of a regular array of locally 

connected small processing elements, each PE 
containing only a few registers, an adder and 
memory.  

o the circuit architecture matches that of FPGAs 
with their embedded linear arrays of hardwired 
multipliers and memory. 

o there are only three global lines (2 clocks and a 
global clear) 

o a large number of smaller, faster and more power 
efficient memories are used 

• It can do both 1-D and 2-D DFTs. 



 

• Any FFT implementation can do any FFT size. This 
flexibility also provides a strategy to match circuit 
architecture to required application throughputs. 

• It offers better dynamic range (DR) and signal-to-noise 
(S/N) due to an enhanced BFP circuitry. This feature is 
a result of having many different block floating point 
circuit regions, i.e., each region has its own exponent. 

• It provides low latency as well as high throughput.  
Computational latency in cycles/DFT is only slightly 
higher than the same throughput measure. 

• The design is scalable and reconfigurable. Larger 
FFTs are obtained by replicating identical blocks of 
PEs. 

• Design, testing and maintainabililty are simplified 
because the circuit is based on only two small PE 
types.  

 
Streaming 256-Point FFT Design   

To demonstrate this base-4 architecture a design that 
accepts a continuous input stream X(n), while generating a 
continuous output stream Z(n) at the same rate 
(“streaming”) was chosen since this mode is common to 
many signal processing applications.  To add application 
generality a BFP capability was added and a word size of 
16-bits was chosen since this a common choice.  The 
design has circuit pins for real and imaginary 
inputs/outputs, Z/X, a single global reset, and two clocks.   
Because the base-4 design computes FFTs using a number 
of clock cycles that is less than the transform size, a 
separate higher speed clock is used to read out the data. 

An evaluation of the base-4 design is best done by 
comparison with another start-of-art pipelined FFT design 
built to the same specifications, using exactly the same 
underlying hardware.  For this purpose a streaming BFP 
256-point FFT design from Altera was chosen (FFT 
v2.2.0), since their pipelined BFP FFT circuits are the 
fastest of which we are aware.  Both designs were targeted 
to an Altera Stratix II EP2S15F484C3 FPGA.  Altera 
Quartus II tools (v5.1) were used to design and evaluate 
the two FFT circuits.  The base-4 circuit operation was 
verified by comparing the Quartus simulator result with a 
Centar bit-accurate simulation model.  The Quartus II 
timing analyzer finds the critical path that determines the 
maximum clock frequencies.   

The base-4 and Altera results are summarized in Table 1.  
Because the base-4 design provides higher dynamic range 
for a given bit-length, a 20-bit Altera FFT was used in the 
comparison.  To demonstrate this both the dynamic range 
and a signal-to-noise ratio of each circuit are included in 
the table.  Each entry in the table is the mean value 
obtained from 62 different single frequency, full range, 
input data sets (random frequency and phase). The results 
for the Altera circuit were obtained from a bit-accurate 
Matlab model that’s created by the Altera FFT generator.  

There was no noise added to the single frequency inputs, 
so the “noise” represents only internally generated round-
off noise.  Dynamic range was determined from the ratio 
of the maximum output coefficient and maximum noise 
output value.  

For the Altera design the clock speed listed in Table 1 is 
also the complex sample rate.  For the base-4 design the 
complex sample rate is larger than the clock speed in the 
table by a ratio of 256/240 or 389 MHz. However, the 
timing simulations show that the maximum read rate could 
be as high as 429 MHz. 

 
Category Altera 

(20 bit) 
Base-4 
(16-bit) 

Throughput 
(cycles/DFT) 

256 240 

Clock speed (MHz) 302 365 
Throughput (µsec) 0.85 0.66 
Dynamic Range (db) 98.2 99.7 
Signal/Noise (db) 86.9 90.2 
Total ALUTs 7555 7731 
ALMs 4192 4286 
Memory Bits 48640 78708 
18-bit multipliers 12 16 

Table 1. Comparison of Altera and base-4 FFT circuits.  

In the table the number of “adaptive logic modules” 
(ALMs) is included because this value is roughly 
comparable to a Xilinx “slice”.  The base-4 memory size is 
significantly higher, but almost half of the difference is 
due to the fact that the control store consists of completely 
unrolled code.  The control code is repetitive, so added 
control structures here could improve this value. 

This comparison shows that for a 256-point transform the 
base-4 architecture can provide a better throughput with 
comparable FPGA resource usage than traditional 
pipelined FFTs for applications that require a high 
dynamic range. Similar comparisons can be expected for 
other FFT sizes.  For example a base-4 1024-point circuit 
uses only ~680 clock cycles per DFT vs. 1024 for 
pipelined FFTs.  Because the base-4 structure is local and 
regular, similar clock speeds as shown in Table 1 should 
be expected, yielding a complex sample rate of ~542 MHz.  
Alternatively, timing analyses of even a smaller 16-bit 
Altera 1024-pt FFT indicate the complex sample rate 
would only be  ~325MHz. 

Finally, this base-4 circuit design can also do 2-D DFTs 
and with additional memory it could do larger FFTs, 
including DFTs where N is not a power of 2. 
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