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Introduction 
Backprojection is an image reconstruction algorithm that 
is used in a number of applications, including synthetic 
aperture radar (SAR).  For radar processing applications, 
backprojection provides a two-step method for 
reconstructing an image from the radar data that are 
collected.  First, the radar traces are filtered according to a 
linear time-invariant system.  These filtered traces make 
up the input "projection" data to our system.  The 
backprojection process then "smears" these traces across 
the image plane along contours that are defined by the 
nature of the data acquisition process (i.e. the flight path 
of the plane carrying the radar).  Coherently summing 
each of the projected images provides a final 
reconstructed version of the scene.  This is a highly 
effective method of processing SAR images, but is 
generally regarded as being computationally complex 
compared to traditional Fourier-based image formation 
techniques, and thus prohibitively difficult to implement 
on traditional computers.  However, the smearing process 
contains a high degree of parallelism, which makes it 
suitable for implementation on reconfigurable devices. 

We have previously reported our work on implementing 
backprojection for SAR processing on the Heterogeneous 
High-Performance Cluster (HHPC) reconfigurable 
supercomputer, located at the AFRL facility in Rome, 
NY.  Our implementation took advantage of multiple 
nodes of the cluster, with each node consisting of a pair of 
Xeon microprocessors as well as a COTS FPGA board.  
We reported [1] a performance gain of 26x over a single-
node, software-only implementation.  Those results 
indicated several directions in which further performance 
gains could be achieved.  The major obstacles to 
improved performance were reading data from the file 
system and improving the utilization of the PCI bus as 
well as exploiting all of the reconfigurable hardware 
resources available.  We expect significant performance 
gains by eliminating these bottlenecks.  In this work we 
report on tuning the application to the cluster on which it 
is running, and provide some estimates1 for the 
performance gain that we expect to achieve. 

Architectural Overview 
Figure 1 shows a block diagram of the FPGA design that 
is programmed onto each FPGA on the coprocessor 
board.  The FPGA is divided into two clock domains.  
The left-hand side of the picture, known as the "L-clock" 
                                                 
1 Here we present estimates; by the time of the conference, experimental 
results will be available for presentation. 

domain, is synchronous to the PCI bus that connects the 
FPGA board to the host PC.  The right-hand side, or "P-
clock" domain, contains the logic that stores and 
processes the backprojection data. 

The system operates in the following sequence.  First, 
projection data are sent from the host PC to the FPGA.  
Once the on-chip projection BlockRAMs have been 
loaded, the FPGA is directed to run one iteration of 
processing.  A single iteration consists of reading pixel 
data from the on-board SRAMs, calculating the new 
values based on the projection data, and writing the new 
pixel data back to the SRAMs.  After the iteration is 
complete, the next set of projection data is sent to the 
FPGA, at which point the FPGA is ready for another 
iteration.  Breaking the computation into multiple 
iterations in this fashion allows us to process larger 
amounts of input data than will fit at one time in on-chip 
memory.  When all input projection data have been 
processed, the final target image is read from the FPGA 
and saved in the host PC's memory.  

 
Figure 1. Block Diagram of FPGA Design 

Before each iteration, projection data are sent to the board 
through a two-step process.  In the first step, data are 
transferred across the PCI bus from the host PC to the 
FPGA, where they are stored in staging BlockRAMs in 
the L-clock domain.  In the second step, data from the 
staging BlockRAMs are read in the P-clock domain and 
written into projection data BlockRAMs, where they will 
be used during processing.  In order to improve the 
throughput, a double-buffering mechanism is employed.  
By using two staging BlockRAMs instead of one, data 
can be written into one while it is being read from the 
other, thus overlapping the two steps. 

Pixel data that eventually form the final target image are 
stored in on-board SRAMs.  These SRAMs are zeroed 
before processing begins.  Pixel values of the 
reconstructed target image are accumulated during 
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processing.  In order to maximize the available memory 
bandwidth, two copies of the pixel data are kept.  In each 
iteration, pixel data are read from one SRAM, new values 
are accumulated, and the results are written to the other.  
For the next iteration, the roles of the two SRAMs are 
switched.  Extra logic keeps track of which SRAM is the 
most up-to-date copy of the target image so that the 
correct final result is read. 

The final target image is copied to the host PC using the 
staging BlockRAMs.  Blocks of image data are first 
transferred from the SRAM to the staging BlockRAMs, 
and from there transferred to the host PC over the PCI 
bus.  The same double-buffering mechanism is used to 
improve the throughput of this transfer. 

Architectural Improvements 
The first performance bottleneck to be removed is the use 
of the clustered file system.  Performance studies showed 
that reading in the backprojection data and writing the 
final consolidated target image to disk consumed more 
than 50% of the total runtime of the system.  The new 
system will be adapted to eliminate the use of the file 
system, so incoming data will be streamed in over the 
Gigabit Ethernet interface.  Output data will use a 
publish/subscribe [2] mechanism, where each published 
block is the size of a target image produced by a single 
node.  This fine level of granularity is advantageous, since 
it reduces the amount of uninteresting data transmitted to 
a subscriber.  Removing the effects of file I/O from both 
the reference (software-only) model and the previous 
(hybrid) system reveals that the hybrid system runs 270x 
faster than the reference model.  We will base the rest of 
our estimates on this number. 

Second, we wish to increase the utilization of the PCI bus 
for transferring data between the host PC and the FPGA 
board.  The current system implements a double-buffering 
mechanism to improve data transfer performance, but 
studies show that the full bandwidth of the PCI bus is not 
utilized.  Two architectural improvements are available 
which will increase the utilization factor.  First, the 
current system uses only one of the two available FPGAs 
on the coprocessing board.  Programming both FPGAs 
will allow us to use a four-way buffering scheme instead 
of the previous two-way buffering, which will as much as 
double the activity on the PCI bus.  Second, when 
returning target images from the FPGA to the host PC, we 
will use the DMA transfer mode, which will increase the 
performance of data transfer by as much as 10x by both 
reducing overhead and increasing utilization.  Currently, 
the less efficient Programmed I/O (PIO) transfer mode is 
used, since the target image transfer times were not on the 
critical path for our design. 

Finally, we can increase the processing power of the new 
system by taking advantage of resources that were unused 
in the current design.  We have already described the use 
of two FPGAs instead of one per board; this will allow 
each board to process two sub-images.  We will further 
double the size of each sub-image by increasing the 
utilization of the SRAMs attached to each node.  The 

current system fills one SRAM with image data; the new 
system will fill two.  Overall, we will increase the size of 
the target image processed by a single node by 4x.  Using 
two SRAMs provides an additional benefit of increasing 
the amount of data that can be read in parallel, allowing 
the addition of a second processing pipeline to the 
hardware implementation.  Despite increasing the size of 
the target image, all additional processing occurs in 
parallel so it requires no additional time to process. 

We will also increase the number of projections that are 
processed in parallel.  Increasing the number of 
projections processed in parallel from four to eight does 
not significantly increase the latency of a single 
processing iteration, and overall requires half as many 
iterations to process the image.  Thus the processing time 
will be reduced by approximately 2x.  We expect the 
improvements in the data transfer performance will make 
this factor significant, where in the current design the 
performance of the processing step is overshadowed by 
other factors. 

Conclusions 
We have presented the implementation of backprojection 
for SAR on a reconfigurable supercomputer.  Our results 
indicate that significant speedup of the algorithm can be 
achieved by exploiting the strengths and avoiding the 
bottlenecks of the architecture.  Our approach 
demonstrates significant gains in performance over an 
earlier implementation while at the same time increasing 
the size of the image processed on each node by a factor 
of four.  The architectural improvements described here 
should more than offset the 4x increase in data to be 
transferred and processed.  We expect to gain 
performance by removing the reliance on the file system, 
improving the utilization of the PCI bus during data 
transfer, and adding additional computation resources.  
Estimates show that, if we assume that a software 
implementation will take 4x longer to process an image 
that is 4x larger, our new hardware system will process 
data three orders of magnitude faster than the software 
solution, and approximately 40 times faster than our 
previous solution.  Despite the fact that the numbers 
presented here are estimates, a speedup of three orders of 
magnitude not only shows a greatly improved solution to 
the original problem, but also a compelling argument in 
favor of the use of reconfigurable resources for highly 
parallel applications such as backprojection. 
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