
Approved for public release; distribution unlimited.

Improving the Performance of Parallel Backprojection on a
Reconfigurable Supercomputer

Ben Cordes, Miriam Leeser, Eric Miller
Department of Electrical and Computer Engineering

Northeastern University, Boston MA
{bcordes,mel,elmiller}@ece.neu.edu

Richard Linderman
Air Force Research Labs, Rome NY
richard.linderman@rl.af.mil

Introduction
Backprojection is an image reconstruction algorithm that
is used in a number of applications, including synthetic
aperture radar (SAR). For radar processing applications,
backprojection provides a two-step method for
reconstructing an image from the radar data that are
collected. First, the radar traces are filtered according to a
linear time-invariant system. These filtered traces make
up the input "projection" data to our system. The
backprojection process then "smears" these traces across
the image plane along contours that are defined by the
nature of the data acquisition process (i.e. the flight path
of the plane carrying the radar). Coherently summing
each of the projected images provides a final
reconstructed version of the scene. This is a highly
effective method of processing SAR images, but is
generally regarded as being computationally complex
compared to traditional Fourier-based image formation
techniques, and thus prohibitively difficult to implement
on traditional computers. However, the smearing process
contains a high degree of parallelism, which makes it
suitable for implementation on reconfigurable devices.

We have previously reported our work on implementing
backprojection for SAR processing on the Heterogeneous
High-Performance Cluster (HHPC) reconfigurable
supercomputer, located at the AFRL facility in Rome,
NY. Our implementation took advantage of multiple
nodes of the cluster, with each node consisting of a pair of
Xeon microprocessors as well as a COTS FPGA board.
We reported [1] a performance gain of 26x over a single-
node, software-only implementation. Those results
indicated several directions in which further performance
gains could be achieved. The major obstacles to
improved performance were reading data from the file
system and improving the utilization of the PCI bus as
well as exploiting all of the reconfigurable hardware
resources available. We expect significant performance
gains by eliminating these bottlenecks. In this work we
report on tuning the application to the cluster on which it
is running, and provide some estimates1 for the
performance gain that we expect to achieve.

Architectural Overview
Figure 1 shows a block diagram of the FPGA design that
is programmed onto each FPGA on the coprocessor
board. The FPGA is divided into two clock domains.
The left-hand side of the picture, known as the "L-clock"

1 Here we present estimates; by the time of the conference, experimental
results will be available for presentation.

domain, is synchronous to the PCI bus that connects the
FPGA board to the host PC. The right-hand side, or "P-
clock" domain, contains the logic that stores and
processes the backprojection data.

The system operates in the following sequence. First,
projection data are sent from the host PC to the FPGA.
Once the on-chip projection BlockRAMs have been
loaded, the FPGA is directed to run one iteration of
processing. A single iteration consists of reading pixel
data from the on-board SRAMs, calculating the new
values based on the projection data, and writing the new
pixel data back to the SRAMs. After the iteration is
complete, the next set of projection data is sent to the
FPGA, at which point the FPGA is ready for another
iteration. Breaking the computation into multiple
iterations in this fashion allows us to process larger
amounts of input data than will fit at one time in on-chip
memory. When all input projection data have been
processed, the final target image is read from the FPGA
and saved in the host PC's memory.

Figure 1. Block Diagram of FPGA Design

Before each iteration, projection data are sent to the board
through a two-step process. In the first step, data are
transferred across the PCI bus from the host PC to the
FPGA, where they are stored in staging BlockRAMs in
the L-clock domain. In the second step, data from the
staging BlockRAMs are read in the P-clock domain and
written into projection data BlockRAMs, where they will
be used during processing. In order to improve the
throughput, a double-buffering mechanism is employed.
By using two staging BlockRAMs instead of one, data
can be written into one while it is being read from the
other, thus overlapping the two steps.

Pixel data that eventually form the final target image are
stored in on-board SRAMs. These SRAMs are zeroed
before processing begins. Pixel values of the
reconstructed target image are accumulated during

Approved for public release; distribution unlimited.

processing. In order to maximize the available memory
bandwidth, two copies of the pixel data are kept. In each
iteration, pixel data are read from one SRAM, new values
are accumulated, and the results are written to the other.
For the next iteration, the roles of the two SRAMs are
switched. Extra logic keeps track of which SRAM is the
most up-to-date copy of the target image so that the
correct final result is read.

The final target image is copied to the host PC using the
staging BlockRAMs. Blocks of image data are first
transferred from the SRAM to the staging BlockRAMs,
and from there transferred to the host PC over the PCI
bus. The same double-buffering mechanism is used to
improve the throughput of this transfer.

Architectural Improvements
The first performance bottleneck to be removed is the use
of the clustered file system. Performance studies showed
that reading in the backprojection data and writing the
final consolidated target image to disk consumed more
than 50% of the total runtime of the system. The new
system will be adapted to eliminate the use of the file
system, so incoming data will be streamed in over the
Gigabit Ethernet interface. Output data will use a
publish/subscribe [2] mechanism, where each published
block is the size of a target image produced by a single
node. This fine level of granularity is advantageous, since
it reduces the amount of uninteresting data transmitted to
a subscriber. Removing the effects of file I/O from both
the reference (software-only) model and the previous
(hybrid) system reveals that the hybrid system runs 270x
faster than the reference model. We will base the rest of
our estimates on this number.

Second, we wish to increase the utilization of the PCI bus
for transferring data between the host PC and the FPGA
board. The current system implements a double-buffering
mechanism to improve data transfer performance, but
studies show that the full bandwidth of the PCI bus is not
utilized. Two architectural improvements are available
which will increase the utilization factor. First, the
current system uses only one of the two available FPGAs
on the coprocessing board. Programming both FPGAs
will allow us to use a four-way buffering scheme instead
of the previous two-way buffering, which will as much as
double the activity on the PCI bus. Second, when
returning target images from the FPGA to the host PC, we
will use the DMA transfer mode, which will increase the
performance of data transfer by as much as 10x by both
reducing overhead and increasing utilization. Currently,
the less efficient Programmed I/O (PIO) transfer mode is
used, since the target image transfer times were not on the
critical path for our design.

Finally, we can increase the processing power of the new
system by taking advantage of resources that were unused
in the current design. We have already described the use
of two FPGAs instead of one per board; this will allow
each board to process two sub-images. We will further
double the size of each sub-image by increasing the
utilization of the SRAMs attached to each node. The

current system fills one SRAM with image data; the new
system will fill two. Overall, we will increase the size of
the target image processed by a single node by 4x. Using
two SRAMs provides an additional benefit of increasing
the amount of data that can be read in parallel, allowing
the addition of a second processing pipeline to the
hardware implementation. Despite increasing the size of
the target image, all additional processing occurs in
parallel so it requires no additional time to process.

We will also increase the number of projections that are
processed in parallel. Increasing the number of
projections processed in parallel from four to eight does
not significantly increase the latency of a single
processing iteration, and overall requires half as many
iterations to process the image. Thus the processing time
will be reduced by approximately 2x. We expect the
improvements in the data transfer performance will make
this factor significant, where in the current design the
performance of the processing step is overshadowed by
other factors.

Conclusions
We have presented the implementation of backprojection
for SAR on a reconfigurable supercomputer. Our results
indicate that significant speedup of the algorithm can be
achieved by exploiting the strengths and avoiding the
bottlenecks of the architecture. Our approach
demonstrates significant gains in performance over an
earlier implementation while at the same time increasing
the size of the image processed on each node by a factor
of four. The architectural improvements described here
should more than offset the 4x increase in data to be
transferred and processed. We expect to gain
performance by removing the reliance on the file system,
improving the utilization of the PCI bus during data
transfer, and adding additional computation resources.
Estimates show that, if we assume that a software
implementation will take 4x longer to process an image
that is 4x larger, our new hardware system will process
data three orders of magnitude faster than the software
solution, and approximately 40 times faster than our
previous solution. Despite the fact that the numbers
presented here are estimates, a speedup of three orders of
magnitude not only shows a greatly improved solution to
the original problem, but also a compelling argument in
favor of the use of reconfigurable resources for highly
parallel applications such as backprojection.

References
[1] A. Conti, B. Cordes, M. Leeser, E. Miller, and R.

Linderman, "Adapting Parallel Backprojection to an FPGA
Enhanced Distributed Computing Environment," HPEC
2005.

 [2] P. Eugster, P. Felber, R. Guerraoiu, and A. M. Kermarrec,
"The Many Faces of Publish/Subscribe," ACM Computing
Surveys, 35(2):114-131, June 2003.

[3] M. Soumekh, Synthetic Aperture Radar Signal Processing
with MATLAB Algorithms, John Wiley & Sons, New York
NY, 1999. ISBN 0-471-29706-2.

