

Multi-FPGA based High Performance LU Decomposition
Arvind Sudarsanam, Seth Young, Thomas Hauser, Dasu Aravind.

Utah State University
asudarsanam@cc.usu.edu, sey@cc.usu.edu, thauser@engineering.usu.edu, dasu@engineering.usu.edu.

Abstract
LU Decomposition is a linear algebra routine that is used to
bring down the complexity of solving a system of linear
equations with multiple RHS. Its application can be found
in computational physics (modeling 2-D structures), image
processing, and computational chemistry (design and
analysis of molecular structures). This paper investigates
the hardware software co-design of large scale block-based
LU decomposition algorithm on the Starbridge
Hypercomputer. Results are shown for a double precision
complex matrix of size 1024x1024 implemented on a
system comprising of a single PC connected to ‘N’ FPGAs
via a single PCI bus. Performance results and comparisons
with a cluster will be provided at the time of presentation at
the conference.

Introduction
In the recent past FPGAs seem to indicate a promise for
large scale data-path parallelism on-chip and hence
potential for significant speedup over conventional
microprocessor systems. There have been a crop of several
hardware systems on the market such as the Cray XD1,
Nallatech boards, SRC machines and Starbridge
Hypercomputer. The programmability of these systems also
seems to have a large variety such as conventional VHDL
or Viva to program the FPGAs and C/C++ to program
accompanying microprocessors. But there has also been a
healthy level of skepticism on how these systems will
perform with scientific applications that involve floating
point and complex data types. In this paper, we are
investigating the hardware-software co-design of large scale
LU decomposition algorithm on the Starbridge
Hypercomputer. We evaluate the potential speed up the
system can offer with respect to a cluster of AMD Opteron
cluster, measure the compute and communication
limits/tradeoffs of the system and the scientific friendliness
of the GUI based synthesis environment Viva. The lessons
learnt from this process are also being integrated into a
system level multi-FPGA-CPU performance prediction tool
to design application specific systems or evaluate suitability
of off-the shelf systems for specific applications.

LU Decomposition is a matrix-based scientific application
that decomposes a square matrix into two triangular
matrices [1]. One of them is a lower-triangular matrix, with
all the elements above the main diagonal equal to zero, and
the other matrix is an upper-triangular matrix, with all the
elements below the main diagonal equal to zero.

Block-based algorithms are conventionally used for parallel
processing of large matrices. Linear algebra based
applications that are optimized towards distributed
computing make use of block-based algorithms. In such

algorithms, a top-level controller breaks down the input
matrix into multiple sub-matrices and assigns the
processing of the different sub-matrices to different nodes.
This is done due to the following reasons: (1) Each
computation node may not have enough local memory to
hold the entire input matrix and process it. (2) Block-based
algorithms are designed such that the inter-block
communication is kept to a minimum.

Block-based algorithms for LU decomposition [2] provide a
large amount of inter-block parallelism. This characteristic
makes it an ideal candidate for distributed computing
platforms. By analyzing the computation model at the level
of a single bxb block, it was found that the bulk of
computations happened in a triple-nested loop, thereby
making it an ideal candidate for hardware acceleration.
Also, the amount of data to be transferred is O(b2), whereas
the number of arithmetic operations to be executed is O(b3).
This alleviates the need for a high bandwidth network to
exist between memory and the hardware device. However,
bandwidth limitations become a major issue for large
distributed computing platforms, with multiple computing
nodes connected to a single PC (number of computing
nodes >> b). This paper provides an overview of the
blocked LU algorithm, and discusses the co-design
methodology used to implement the same. Results will
include performance numbers for different input
configurations (block size, matrix size etc.).

Algorithm overview
In the proposed LU decomposition implementation based
on a block-based algorithm, the entire matrix is split into
multiple equal-sized sub-matrices and each block is
processed separately. Pseudo code for the entire algorithm
is provided below.

Algorithm 1: Top-level pseudo-code
/* Inputs: Data matrix A[N][N], Matrix size (N), block size(b) */
1. [A11[1][1],A12[1][N/b-1],A21[N/b-1][1],A22[N/b-1][N/b-1]]=
Partition(A,b);
2. [L11, U11, temp] = sub-step1(A11,b);
3. invL11 = inverse(L11);
4. For X = 1 to N/b-1
L21[X][1] = sub-step2(A21[X][1],U11,temp);
5. For X = 1 to N/b-1
 U12[X][1] = sub-step3(A12[X][1],invL11)
6. For X = 1 to N/b-1
 For Y = 1 to N/b-1
 A22new[X][Y] = sub-step4(A22[X][Y],
L21[X][1], U12[1][Y]);
7. N = N – b;
8. A = Combine(A22new[N/b-1][N/b-1]);
9. If (A is not empty) goto step 1.
10. Exit

mailto:asudarsanam@cc.usu.edu
mailto:sey@cc.usu.edu
mailto:thauser@engineering.usu.edu
mailto:dasu@engineering.usu.edu

Design Setup
Hardware acceleration of LU decomposition uses multiple
hardware and software resources developed at Starbridge
Systems [3]. Hardware platform used is a Hypercomputer
with multiple XC2V6000 FPGAs on a single board
connected to an x86 machine via PCI bus. We used the
graphics-based hardware design tool Viva as the front-end
and Xilinx synthesis tools as back-end to generate the
bitstreams. C APIs at Starbridge systems were used to
control data communication between the PC and board.

Methodology

Figure 1: Top-level FPGA design.

The block-based algorithm is implemented using a C
program that can handle the top-level control. This C
program also handles the configuration and reconfiguration
of the target FPGA hardware and data communication
between the hard disk holding the input matrix and the
DRAM memory of all the FPGAs. This program runs on
the host PC controller and any data transfer between the
host PC and the FPGA accelerator board is performed
through the PCI bus. In the proposed implementation,
processing of a single ‘bxb’ block of data is localized to a
single FPGA, thereby removing any need for inter-FPGA
communication. The inner-most loop is identified and the
computation data path found inside this loop is
implemented using FPGA hardware. Multiple data paths
can be implemented based on the availability of hardware
resources on the FPGA. There is considerable overhead due
to the control and memory access modules that are required
to support the main data paths.

Data paths found in the LU decomposition algorithm
consists of double precision floating point complex
arithmetic computations, and are extremely expensive in
terms of hardware resources. Hence, we found it difficult to
realize multiple data path units inside a single FPGA,
though a lot of intra-block parallelism was available in the
LU algorithm. Parallelism was explored at the inter-block
level and exploited using multiple FPGA units.

The host PC controller is responsible for data to be made
available at the PCI bus and for reading back the processed
data from the PCI bus. Figure 1 shows the major functional
components involved in our design. Such a modular design
helps us to develop a general technique towards hardware
design of any block-based algorithm (commonly found in
matrix algebra).

PC to DRAM controller is the Viva module that handles
data transfer between the PCI bus and the DRAM. Once the

PC is ready to provide data on the PCI bus, it sends a
control signal that is interpreted by this controller and
controller is set to a state that enables it to transfer data on
the PCI bus onto the DRAM. Once all the data provided by
the PC is written onto DRAM, the PC to DRAM controller
sends a ‘Done’ signal to the DRAM to BRAM controller.
The DRAM to BRAM controller is now set into a state that
enables it to read data from DRAM and provide it to the
compute engine, and also sends a control signal to the
compute engine, that enables the compute engine to fill up
relevant block RAMs using the data provided by the
DRAM to BRAM controller. Once all the data is written
onto BRAMs, the compute engine starts processing the
data. Once the processing is completed and the BRAMs are
filled with the output data, the compute engine sends a
‘Done’ signal to the DRAM to BRAM controller and starts
providing data. This process continues till all input data is
processed and written back to PC memory.

Results and Analysis
The proposed design for LU decomposition can handle
varying block sizes and input matrix sizes. Table 1 shows
the resource utilization of the three different steps of our
design for a matrix of size 1024x1024 and a block size of
16. The compute engine was implemented with a single
data path available for performing the computations in the
inner-most loop. As seen in Table 1, the resource utilization
for steps 3 and 4 are nearly 50% of a single FPGA. Hence,
it is possible to increase the number of data paths to two or
three and obtain further speed-up. We are currently
generating the results for varying matrix and block sizes.
Results will be made available during the presentation.

Sub-step No. of
slices

No. of 18x18
multipliers

No. of
BRAMs

#2 25056 39 20

#3 16277 39 28

#4 16553 39 32

Table 1: Resource utilization for LU decomposition

Summary and Future Work
This paper evaluates a multi-FPGA based system design for
large-scale LU decomposition. This design is scalable to
any number of FPGAs, any matrix size, or any block size.
Initial results show lack of resources within a single FPGA
for implementing multiple data paths (more than 3) for
complex double precision numbers. Proposed system
exploits inter-block parallelism to speed-up the algorithm.
Future work involves optimization of the arithmetic units
and use of PCI express for PC to FPGA data transfer.

References
[1] W. H. Press, et. al. Numerical Recipes in C. Cambridge

University Press, 1992.

[2] Seonil Choi et. al. “Time and Energy Efficient Matrix
Factorization using FPGAs”, Proceedings of ICFPT, 2003.

[3] Starbridge Sytems, www.starbridgesystems.com.

http://www.starbridgesystems.com/

