
 

Design of Path Optimization Algorithm Using COTS Field Programmable 
Gate Array Hardware and Software Platforms   

 
Neil Harold, John Ostapovich 

Nallatech 
E-mail: n.harold@nallatech.com

E-mail: j.ostapovich@nallatech.com
   

 
Rick Pancoast 

Lockheed Martin MS2 
E-mail: rick.pancoast@lmco.com

 
 

 
Jon Russo 

Lockheed Martin ATL 
E-mail: jrusso@atl.lmco.com

 

 
Introduction1

It seems obvious to state that High Performance Embedded 
Computing (HPEC) technology has changed radically in the 
last 10 years, with significant upgrades in capability 
offering superior performance.  One of the enablers of this 
is the commoditization of computer components helping to 
reduce the overall cost of HPEC technologies.   

On closer analysis, however, one could argue that in fact 
very little has changed, in the sense that the challenges 
faced 10 years ago are the very same as those confronting 
developers today.  Even more significantly, the techniques 
used to overcome these obstacles really haven’t changed 
either, in particular, the processing technologies that 
underpin embedded computing applications.  As they start 
to reach performance limits imposed by the laws of physics, 
developers are faced with critical decisions over which 
direction to take to deliver future HPEC systems. 

Revolution in Programmable Logic 
Programmable logic has undergone a dramatic change over 
the last 10 years, with the advent of advanced multi-million 
gate devices, leading to the introduction of hugely powerful 
families of Field Programmable Gate Arrays (FPGAs).  The 
increasing capability of these devices has seen them evolve 
from playing a supplementary role, often as “glue” logic in 
a system, to performing vital processing tasks that had 
previously been the domain of ASICs.   

While the widespread use of FPGAs for embedded signal 
processing has taken longer to gather momentum, the 
insatiable appetite of military HPEC applications has meant 
that the DoD has shown more interest than most in using 
FPGAs for this purpose.  The use of FPGAs has tended to 
be limited, however, to the role of a “hardware accelerator” 
supporting a more traditional processing architecture.   

Vendors, developers and users are beginning to realize the 
potential of FPGAs for a greater share of embedded 
computing tasks, but even in this high-interest climate, 
questions remain over just how much extra performance 
can be gained when using FPGAs and, perhaps more 
importantly, at what cost?   

FPGA Technology 
The fixed architecture of general purpose processors 
(GPPs) and DSPs has constrained their main improvements 
                                                 
 

in capability over in the last 10 years to those gains attained 
through increasing clock frequencies.  The flexible 
architecture of FPGAs, on the other hand, have been able to 
take full advantage of increasing transistor count to offer 
greater volumes of programmable logic combined with 
fixed function pieces of silicon such as embedded 
processors, multi-gigabit transceivers and embedded digital 
signal processing blocks.  

The technical advances achieved in the last few years in 
particular have made FPGAs more powerful at the device 
level, easier to integrate at the board level and more 
applicable to signal processing applications at the system 
level.  Unfortunately, these advances have not necessarily 
made developing applications for FPGAs any easier.  
Despite significant industry investment in design tools and 
compilers, the use of FPGAs remains mainly limited to user 
base with long-standing expertise in developing solutions 
using Hardware Description Languages (HDLs) such as 
VHDL and Verilog. 

High-Level Languages for FPGAs  
The last 5 years has seen unprecedented progress in the area 
of high-level tools for FPGAs, with varying degrees of 
success.  There are a number of tools available offering a 
variety of approaches to solving this problem, mainly 
focused on offering translating high-level languages such as 
C/C++ and Matlab to a “middleware” level such as VHDL 
that can be mapped to the FPGA. 

Many parameters influence the effectiveness of these tools, 
in particular the precise syntax of the high-level language 
used (they rarely operate on fully standard languages) and 
their ability to implement parallelism.  Most of the available 
tools attack parallelism at the micro-level – they break 
down specific functions in the code that can be parallelized.  
Some tools look at the code at a macro-level, but this 
generally requires further variation from the standard 
language, i.e. more effort on the part of the programmer. 

Nallatech’s DIME-C tool operates on a micro-level, 
translating discrete functions written in ANSI-C code into 
VHDL that can then be put through the standard synthesis 
and implementation process to generate a bitstream for the 
FPGA.  It expresses the C-code as a data-flow and analyses 
that dataflow to determine which variables are related to 
each other in order to understand where inter-dependencies 
lie.  This information is then used to implement parallel 
pipelines where appropriate. 
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Figure 1: Screenshot from DIME-C 

Users of DIME-C require a degree of knowledge about the 
FPGA architecture, thus, the main benefit of the tool is in 
improving productivity of existing design teams, rather than 
introducing vast numbers of new users to FPGAs.  

Reducing FPGA Development Times 
Many experienced FPGA users would attest to the fact that 
building reliable communications structures in multi-FPGA 
systems is actually a more time-consuming task than 
creation of the algorithms themselves, with as much as 80% 
of development time being spent on this element of the 
design.  Despite this potential for productivity 
improvement, development of communication structures 
within devices and systems is an area of FPGA tool 
development that has gone largely ignored by the 
community.  The goal of Nallatech’s DIMEtalk is to 
address this issue by making the development and targeting 
of applications to COTS FPGA hardware more efficient, 
straightforward and reliable.   

Application and Productivity Performance 
Graph-based path optimization is applicable to several 
domains, including craft mission planning and VLSI 
design.  We consider the problem of shortest path finding in 
a partially connected graph whose nodes represent 
quantized positions in N-dimensional space, and whose 
edges represent costs of traveling between node pairs.  The 
DIME-C implementation of the shortest path solver was 
based on a dynamic programming approach which may also 
be applied to maximum likelihood algorithms such as 
Viterbi decoding.  Figure 2 shows the simple interface to 
the dynamic programming engine done using DIME-C.  

Persistent cost data is loaded and distributed into the route 
engine using an initialization call.  Subsequent transfers 
may incrementally modify persistent data, or may query the 
engine for a route table.  

Lockheed Martin has utilized standard DIMEtalk APIs, 
integrated within a discrete event simulator known as 
CSIM, providing a hardware-in-the-loop capability to assist 
in reconfiguring and controlling the FPGA and to provide 
federated access to the dynamic programming engine across 
remotely located participants. 

The five-million "equivalent gate" design is comprised of 
27 1K X 32-bit dual port memories, and coordinates over 
100 operators in a highly irregular parallel pipeline.  The 
first pass design outperforms modern conventional 
processors by 10-to-1 in actual time, and 100-to-1 in cycle 
count, running at 100 MHz on a Xilinx Virtex-II 2V4000.   

 
Figure 2: DIMEtalk Design 

Related designs with higher levels of unrolling have 
achieved close to 100-fold improvements in performance, 
without any custom optimization.  

The full design took approximately one person-month to 
conceive, implement, and test, compared with an estimated 
time of 1 year perform the same tasks using VHDL.   

The Future 
It appears that the laws of physics are finally catching up 
with Moore’s Law, which will affect the future 
performance gains of GPP–based HPEC systems.  This will 
lead to greater interest than ever before in doing “more with 
less” – that is, considering new technologies and 
architectures that can deliver increased performance while 
adhering to the power and thermal restrictions of the 
targeted platform and environment.  At this juncture, it is 
clear that new technologies and alternative processing 
approaches will be vital to the technological progression 
and increased effectiveness of DoD systems.     

FPGA technology currently offers a great deal in this regard 
as a new paradigm in processing architectures.  The most 
significant obstacle to their mainstream acceptance is the 
creation of a mature design-flow that enables non-experts to 
target FPGA platforms.  The work presented here does not 
resolve that issue, but it makes a significant contribution to 
those developers already using FPGAs and begins to bridge 
the gap between the traditional FPGA design flow and the 
utopian goal of “C-to-gates”. 

Wider-spread adoption of FPGAs could have a massive 
impact on the future capabilities of DoD architectures.  In 
addition to offering superior performance, the lower power 
characteristics of these devices have the promise to deliver 
on the desire of the DoD to move more processing into the 
sensor payload.  Some of the advantages include a 
reduction in the burden on communications networks, thus 
freeing up vital bandwidth that will assist initiatives such as 
the Global-Information-Grid and truly enable a fully 
network-centric battlefield. 

 

 


