

Design of Path Optimization Algorithm Using COTS Field Programmable
Gate Array Hardware and Software Platforms

Neil Harold, John Ostapovich

Nallatech
E-mail: n.harold@nallatech.com

E-mail: j.ostapovich@nallatech.com

Rick Pancoast

Lockheed Martin MS2
E-mail: rick.pancoast@lmco.com

Jon Russo

Lockheed Martin ATL
E-mail: jrusso@atl.lmco.com

Introduction1

It seems obvious to state that High Performance Embedded
Computing (HPEC) technology has changed radically in the
last 10 years, with significant upgrades in capability
offering superior performance. One of the enablers of this
is the commoditization of computer components helping to
reduce the overall cost of HPEC technologies.

On closer analysis, however, one could argue that in fact
very little has changed, in the sense that the challenges
faced 10 years ago are the very same as those confronting
developers today. Even more significantly, the techniques
used to overcome these obstacles really haven’t changed
either, in particular, the processing technologies that
underpin embedded computing applications. As they start
to reach performance limits imposed by the laws of physics,
developers are faced with critical decisions over which
direction to take to deliver future HPEC systems.

Revolution in Programmable Logic
Programmable logic has undergone a dramatic change over
the last 10 years, with the advent of advanced multi-million
gate devices, leading to the introduction of hugely powerful
families of Field Programmable Gate Arrays (FPGAs). The
increasing capability of these devices has seen them evolve
from playing a supplementary role, often as “glue” logic in
a system, to performing vital processing tasks that had
previously been the domain of ASICs.

While the widespread use of FPGAs for embedded signal
processing has taken longer to gather momentum, the
insatiable appetite of military HPEC applications has meant
that the DoD has shown more interest than most in using
FPGAs for this purpose. The use of FPGAs has tended to
be limited, however, to the role of a “hardware accelerator”
supporting a more traditional processing architecture.

Vendors, developers and users are beginning to realize the
potential of FPGAs for a greater share of embedded
computing tasks, but even in this high-interest climate,
questions remain over just how much extra performance
can be gained when using FPGAs and, perhaps more
importantly, at what cost?

FPGA Technology
The fixed architecture of general purpose processors
(GPPs) and DSPs has constrained their main improvements

in capability over in the last 10 years to those gains attained
through increasing clock frequencies. The flexible
architecture of FPGAs, on the other hand, have been able to
take full advantage of increasing transistor count to offer
greater volumes of programmable logic combined with
fixed function pieces of silicon such as embedded
processors, multi-gigabit transceivers and embedded digital
signal processing blocks.

The technical advances achieved in the last few years in
particular have made FPGAs more powerful at the device
level, easier to integrate at the board level and more
applicable to signal processing applications at the system
level. Unfortunately, these advances have not necessarily
made developing applications for FPGAs any easier.
Despite significant industry investment in design tools and
compilers, the use of FPGAs remains mainly limited to user
base with long-standing expertise in developing solutions
using Hardware Description Languages (HDLs) such as
VHDL and Verilog.

High-Level Languages for FPGAs
The last 5 years has seen unprecedented progress in the area
of high-level tools for FPGAs, with varying degrees of
success. There are a number of tools available offering a
variety of approaches to solving this problem, mainly
focused on offering translating high-level languages such as
C/C++ and Matlab to a “middleware” level such as VHDL
that can be mapped to the FPGA.

Many parameters influence the effectiveness of these tools,
in particular the precise syntax of the high-level language
used (they rarely operate on fully standard languages) and
their ability to implement parallelism. Most of the available
tools attack parallelism at the micro-level – they break
down specific functions in the code that can be parallelized.
Some tools look at the code at a macro-level, but this
generally requires further variation from the standard
language, i.e. more effort on the part of the programmer.

Nallatech’s DIME-C tool operates on a micro-level,
translating discrete functions written in ANSI-C code into
VHDL that can then be put through the standard synthesis
and implementation process to generate a bitstream for the
FPGA. It expresses the C-code as a data-flow and analyses
that dataflow to determine which variables are related to
each other in order to understand where inter-dependencies
lie. This information is then used to implement parallel
pipelines where appropriate.

mailto:n.harold@nallatech.com
mailto:j.ostapovich@nallatech.com
mailto:rick.pancoast@lmco.com
mailto:jrusso@atl.lmco.com

Figure 1: Screenshot from DIME-C

Users of DIME-C require a degree of knowledge about the
FPGA architecture, thus, the main benefit of the tool is in
improving productivity of existing design teams, rather than
introducing vast numbers of new users to FPGAs.

Reducing FPGA Development Times
Many experienced FPGA users would attest to the fact that
building reliable communications structures in multi-FPGA
systems is actually a more time-consuming task than
creation of the algorithms themselves, with as much as 80%
of development time being spent on this element of the
design. Despite this potential for productivity
improvement, development of communication structures
within devices and systems is an area of FPGA tool
development that has gone largely ignored by the
community. The goal of Nallatech’s DIMEtalk is to
address this issue by making the development and targeting
of applications to COTS FPGA hardware more efficient,
straightforward and reliable.

Application and Productivity Performance
Graph-based path optimization is applicable to several
domains, including craft mission planning and VLSI
design. We consider the problem of shortest path finding in
a partially connected graph whose nodes represent
quantized positions in N-dimensional space, and whose
edges represent costs of traveling between node pairs. The
DIME-C implementation of the shortest path solver was
based on a dynamic programming approach which may also
be applied to maximum likelihood algorithms such as
Viterbi decoding. Figure 2 shows the simple interface to
the dynamic programming engine done using DIME-C.

Persistent cost data is loaded and distributed into the route
engine using an initialization call. Subsequent transfers
may incrementally modify persistent data, or may query the
engine for a route table.

Lockheed Martin has utilized standard DIMEtalk APIs,
integrated within a discrete event simulator known as
CSIM, providing a hardware-in-the-loop capability to assist
in reconfiguring and controlling the FPGA and to provide
federated access to the dynamic programming engine across
remotely located participants.

The five-million "equivalent gate" design is comprised of
27 1K X 32-bit dual port memories, and coordinates over
100 operators in a highly irregular parallel pipeline. The
first pass design outperforms modern conventional
processors by 10-to-1 in actual time, and 100-to-1 in cycle
count, running at 100 MHz on a Xilinx Virtex-II 2V4000.

Figure 2: DIMEtalk Design

Related designs with higher levels of unrolling have
achieved close to 100-fold improvements in performance,
without any custom optimization.

The full design took approximately one person-month to
conceive, implement, and test, compared with an estimated
time of 1 year perform the same tasks using VHDL.

The Future
It appears that the laws of physics are finally catching up
with Moore’s Law, which will affect the future
performance gains of GPP–based HPEC systems. This will
lead to greater interest than ever before in doing “more with
less” – that is, considering new technologies and
architectures that can deliver increased performance while
adhering to the power and thermal restrictions of the
targeted platform and environment. At this juncture, it is
clear that new technologies and alternative processing
approaches will be vital to the technological progression
and increased effectiveness of DoD systems.

FPGA technology currently offers a great deal in this regard
as a new paradigm in processing architectures. The most
significant obstacle to their mainstream acceptance is the
creation of a mature design-flow that enables non-experts to
target FPGA platforms. The work presented here does not
resolve that issue, but it makes a significant contribution to
those developers already using FPGAs and begins to bridge
the gap between the traditional FPGA design flow and the
utopian goal of “C-to-gates”.

Wider-spread adoption of FPGAs could have a massive
impact on the future capabilities of DoD architectures. In
addition to offering superior performance, the lower power
characteristics of these devices have the promise to deliver
on the desire of the DoD to move more processing into the
sensor payload. Some of the advantages include a
reduction in the burden on communications networks, thus
freeing up vital bandwidth that will assist initiatives such as
the Global-Information-Grid and truly enable a fully
network-centric battlefield.

