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Overview 
Reconfigurable computing has emerged as a key 
technology in the field of high performance and embedded 
computing.  Our research focuses on the use of 
reconfigurable processors for solving computationally 
intensive scientific applications, with an added twist. We 
are designing an architecture that can retarget its resources 
dynamically based on run-time and data-driven variation in 
task level parallelism, as typically seen in radar-based target 
tracking, high performance video compression, and N-body 
simulations. 
 
Our approach advocates the derivation of such runtime-
reconfigurable architectures through a set of compile time 
analyses, integrating resource derivation and allocation with 
a set of architectural features that permit rapid run-time 
adaptation of reconfigurable data paths.  We present an 
initial demonstration of our approach targeting a molecular 
dynamics simulation algorithm as a first experiment. The 
molecular dynamics algorithm under consideration has two 
primary computations: a distance calculation (DC) and an 
evaluation of Lennard-Jones potentials (LJP). 
 
The algorithm simulates interactions of a set of molecules 
based on a set of forces, one of which is the Lennard-Jones 
potential.  The strength of the potential between two 
molecules is a strong function of the distance separating the 
molecules.  If two atoms or molecules in a system are 
separated by a distance less than a specified threshold, the 
Lennard-Jones potential between them is calculated.  For 
each molecule in the simulation, we integrate all such 
potentials, and use that result to compute future molecule 
positions in real space (through Newtonian dynamics).  The 
simulation progresses through multiple time steps, with the 
system calculating forces and positions at each step. 
 
Architecture 
Our platform consists of a Xilinx V4FX60 FPGA, on which 
discrete units are placed to perform either DC or LJP 
calculations.  Global data is stored in a feeder FIFO, which 
feeds data to DC units and stores data as it is produced by 
LJPC units.  This feeder FIFO is actually a string of FIFOs, 
where data is passed across all DC units to facilitate 
calculations for every two-atom pair.  The feeder FIFO 
makes extensive use of the hardware FIFOs embedded in 
the FPGA fabric, thus avoiding large amounts of logic slice 
consumption.  Data produced by DC units is sent to an 
intermediate buffer which feeds the LJPC units.  Due to the 

dynamic, data-dependent nature of the molecular dynamics 
algorithm, it is not possible to accurately predict the 
percentage of DC calculations that will lead to LJPC 
calculations.  Consequently, we employ a fixed, equal 
number of DC compute units and LJP compute units, 
together with a set of reconfigurable units called FLEX 
processors.  The DC unit is responsible for determining 
whether to release a pair of molecules to the LJP 
calculators, based on their proximity.  . 

Because the ratio of actual DC to LJP computations is not 
known at design time, a static allocation of DC and LJP 
computation units can lead to inefficient resource 
utilization.  Either too many atom pairs could qualify for 
LJP computations and hence flood the intermediate buffer 
or too few atoms might require the use of LJP units, in 
which case the LJP units would sit idle. The former case 
results from a shortage of LJP units and in the latter case, a 
shortage of DC units. To address the inadequacies of static 
load balancing, we integrate a flexible computational 
module (FLEX).  The role of the FLEX processor is to 
function in either DC or LJP mode, depending on the types 
of calculations that need to be performed.  This architecture 
is illustrated in figure 1.  The mode of each FLEX processor 
is controlled via an on-chip PowerPC processor, which 
dynamically analyzes the state of the computation and 
determines, based on runtime information, an appropriate 
mix of DC and LJP compute units in order to maximize 
computational throughput. 

 
Figure 1:  System block diagram. 

All computations are IEEE-754 single precision floating 
point.  Preliminary results indicate that we can fit two DC, 
two LJP, and four FLEX units on the V4FX60 device.  To 
obtain efficient resource utilization in the FLEX block, we 



 

first ran the data flow graphs of one instance of both the DC 
and the LJPC intermediate representation graphs obtained 
from a standard gcc compiler though a force-directed 
scheduler. The union of these schedules was used to obtain 
a set of resources.  The optimality of the resource set is 
measured by the number of bubbles introduced in the 
pipelines of the floating-point arithmetic units. These 
resources are then fed to a list scheduler that maps an 
optimal number of parallel DC or LJP calculations onto the 
FLEX processor. We have used a VLIW architecture to 
implement the flow of instructions through the processor. 
Instructions are derived directly from the instruction 
schedule.  Programs for DC and LJP computations are 
stored in separate program memories on the FPGA. 

Results 
This project will yield a system that efficiently performs 
dynamic load balancing, based upon the characteristics of a 
set of input data.  It is anticipated that our novel architecture 
of combining static DC and LJPC units with FLEX 
processors on a Xilinx V4FX60 FPGA running at 200 MHz 
will provide substantial speedup over a dual-processor 
Pentium server machine.  Our data flow analysis and 
application-specific design will also provide better 
performance than a general-purpose VLIW processor.  
Synthetically generated data sets of varying sizes and with 
varying proportions of atom pairs on which LJPC 
calculations must be performed will be utilized to 
generalize system performance. 

Table 1 shows the types and numbers of arithmetic units 
that are employed for each type of computation module.  
The FLEX module is more complex, as it must be able to 
perform both DC and LJP computations. 

Table 1: Arithmetic Unit Distributions. 

Module + - * ÷ ≤ 

DC 2 2 2 0 2 

LJPC 3 1 3 1 0 

FLEX 3 2 3 1 1 

 
Preliminary resource utilization estimates for the different 
blocks are shown in table 2.  The system will consist of two 
DC units, two LJPC units, and four FLEX units. 

Table 2: Estimated Resource Utilization. 

Module Slices DSP48s BRAMs 

DC 1,642 8 0 

LJPC 2,514 12 0 

FLEX 3,610 12 20 

 
Under steady-state conditions, each module will produce a 
valid output on each clock cycle, except the DC unit which 
produces two per cycle.  Given a 200 MHz clock, this 
implies a throughput of 200 million results per second for a 
LJPC or FLEX and 400 million results per second for a DC 
unit.  Under circumstances when all atom pairs flow 
through both DC and LJPC units, maximum throughput of 
1 billion results per second are attainable. 

Results of load balancing performance across several 
synthetically generated data sets and results of speed 
performance versus the dual-processor Pentium will be 
presented at the workshop. 

 


