

An FPGA-Based Dynamic Load-Balancing Processor Architecture
for Solving N-body Problems

Jonathan Phillips, Matthew Areno, Brandon Eames, and Aravind Dasu

Utah State University
{jdphillips@cc}{matthewareno@cc}{beames@engineering}{dasu@engineering}.usu.edu

Overview
Reconfigurable computing has emerged as a key
technology in the field of high performance and embedded
computing. Our research focuses on the use of
reconfigurable processors for solving computationally
intensive scientific applications, with an added twist. We
are designing an architecture that can retarget its resources
dynamically based on run-time and data-driven variation in
task level parallelism, as typically seen in radar-based target
tracking, high performance video compression, and N-body
simulations.

Our approach advocates the derivation of such runtime-
reconfigurable architectures through a set of compile time
analyses, integrating resource derivation and allocation with
a set of architectural features that permit rapid run-time
adaptation of reconfigurable data paths. We present an
initial demonstration of our approach targeting a molecular
dynamics simulation algorithm as a first experiment. The
molecular dynamics algorithm under consideration has two
primary computations: a distance calculation (DC) and an
evaluation of Lennard-Jones potentials (LJP).

The algorithm simulates interactions of a set of molecules
based on a set of forces, one of which is the Lennard-Jones
potential. The strength of the potential between two
molecules is a strong function of the distance separating the
molecules. If two atoms or molecules in a system are
separated by a distance less than a specified threshold, the
Lennard-Jones potential between them is calculated. For
each molecule in the simulation, we integrate all such
potentials, and use that result to compute future molecule
positions in real space (through Newtonian dynamics). The
simulation progresses through multiple time steps, with the
system calculating forces and positions at each step.

Architecture
Our platform consists of a Xilinx V4FX60 FPGA, on which
discrete units are placed to perform either DC or LJP
calculations. Global data is stored in a feeder FIFO, which
feeds data to DC units and stores data as it is produced by
LJPC units. This feeder FIFO is actually a string of FIFOs,
where data is passed across all DC units to facilitate
calculations for every two-atom pair. The feeder FIFO
makes extensive use of the hardware FIFOs embedded in
the FPGA fabric, thus avoiding large amounts of logic slice
consumption. Data produced by DC units is sent to an
intermediate buffer which feeds the LJPC units. Due to the

dynamic, data-dependent nature of the molecular dynamics
algorithm, it is not possible to accurately predict the
percentage of DC calculations that will lead to LJPC
calculations. Consequently, we employ a fixed, equal
number of DC compute units and LJP compute units,
together with a set of reconfigurable units called FLEX
processors. The DC unit is responsible for determining
whether to release a pair of molecules to the LJP
calculators, based on their proximity. .

Because the ratio of actual DC to LJP computations is not
known at design time, a static allocation of DC and LJP
computation units can lead to inefficient resource
utilization. Either too many atom pairs could qualify for
LJP computations and hence flood the intermediate buffer
or too few atoms might require the use of LJP units, in
which case the LJP units would sit idle. The former case
results from a shortage of LJP units and in the latter case, a
shortage of DC units. To address the inadequacies of static
load balancing, we integrate a flexible computational
module (FLEX). The role of the FLEX processor is to
function in either DC or LJP mode, depending on the types
of calculations that need to be performed. This architecture
is illustrated in figure 1. The mode of each FLEX processor
is controlled via an on-chip PowerPC processor, which
dynamically analyzes the state of the computation and
determines, based on runtime information, an appropriate
mix of DC and LJP compute units in order to maximize
computational throughput.

Figure 1: System block diagram.

All computations are IEEE-754 single precision floating
point. Preliminary results indicate that we can fit two DC,
two LJP, and four FLEX units on the V4FX60 device. To
obtain efficient resource utilization in the FLEX block, we

first ran the data flow graphs of one instance of both the DC
and the LJPC intermediate representation graphs obtained
from a standard gcc compiler though a force-directed
scheduler. The union of these schedules was used to obtain
a set of resources. The optimality of the resource set is
measured by the number of bubbles introduced in the
pipelines of the floating-point arithmetic units. These
resources are then fed to a list scheduler that maps an
optimal number of parallel DC or LJP calculations onto the
FLEX processor. We have used a VLIW architecture to
implement the flow of instructions through the processor.
Instructions are derived directly from the instruction
schedule. Programs for DC and LJP computations are
stored in separate program memories on the FPGA.

Results
This project will yield a system that efficiently performs
dynamic load balancing, based upon the characteristics of a
set of input data. It is anticipated that our novel architecture
of combining static DC and LJPC units with FLEX
processors on a Xilinx V4FX60 FPGA running at 200 MHz
will provide substantial speedup over a dual-processor
Pentium server machine. Our data flow analysis and
application-specific design will also provide better
performance than a general-purpose VLIW processor.
Synthetically generated data sets of varying sizes and with
varying proportions of atom pairs on which LJPC
calculations must be performed will be utilized to
generalize system performance.

Table 1 shows the types and numbers of arithmetic units
that are employed for each type of computation module.
The FLEX module is more complex, as it must be able to
perform both DC and LJP computations.

Table 1: Arithmetic Unit Distributions.

Module + - * ÷ ≤

DC 2 2 2 0 2

LJPC 3 1 3 1 0

FLEX 3 2 3 1 1

Preliminary resource utilization estimates for the different
blocks are shown in table 2. The system will consist of two
DC units, two LJPC units, and four FLEX units.

Table 2: Estimated Resource Utilization.

Module Slices DSP48s BRAMs

DC 1,642 8 0

LJPC 2,514 12 0

FLEX 3,610 12 20

Under steady-state conditions, each module will produce a
valid output on each clock cycle, except the DC unit which
produces two per cycle. Given a 200 MHz clock, this
implies a throughput of 200 million results per second for a
LJPC or FLEX and 400 million results per second for a DC
unit. Under circumstances when all atom pairs flow
through both DC and LJPC units, maximum throughput of
1 billion results per second are attainable.

Results of load balancing performance across several
synthetically generated data sets and results of speed
performance versus the dual-processor Pentium will be
presented at the workshop.

