
Filesystems for Streaming Databases

Bradley C. Kuszmaul
MIT CSAIL

5 6 7 8 9 10 11 12 13

20

21 22

23

24 25 27

26

28

29

30 31

1

15 1614 22212018 19 23 24 25 29 30 3126 27 281 2 3 4 17

17

18
19

2
4

3

6 7

85

9 10

11

1312

14

15 16

h/2

√
N

√
N

√
N

√
N

A

B1 Bℓ

√
N

√
N

√
N

√
N

A B1 Bℓ

h



An Important Class of Streaming Applications

• They insert much data, indexed arbitrarily (for example, by
geographical coordinate).

“Insert at key(71.26585,42.46053).”

• They query the data, asking for all data in arange of indices.

“Give me all images within distance0.1 of (71.3,42.0).”

• Not all the data is queried.

Performance depends on fast insertions and range queries.



Data Structures for Streaming Applications
or

Streaming B-Trees

Bradley C. Kuszmaul
MIT CSAIL

This work represents a collaboration with Michael A. Bender
of SUNY Stony Brook and Martin Farach-Colton at Rutgers.

Students: Jeremy Fineman (MIT), Yoni Fogel (Stony Brook),
Haodong Hu (Stony Brook), and Jelani Nelson (MIT).



Outline

• Review B-Trees.

• Results.

• The problem with B-Trees.

• How Streaming B-Trees work.

• The future.



Dictionaries Store Key-Value Pairs
The problem: Store key-value pairs. Operations
include
• INSERT(k,v): Insert a key-value pair,k → v.
• LOOKUP(k): Find the value associated with

a key.
• NEXT(k): Find the smallest key bigger than

k.

A range query computes some function on all the key-value
pairs whose keys are in a specified range. Range queries can be
programmed using NEXT.



B-Trees are Disk-Efficient Dictionaries

Idea: Whenever you transfer data from disk to memory, try to
transfer a wholeblock of useful data.
The data structure:

• Data is organized into a tree with blocks of sizeB.

• For unit-sized data, fanout isO(B).

• The tree depth isO(logB N), whereN is the number of
elements in the dictionary.



Example INSERT(“ac” ,3) into a B-Tree

aa→ 3; ac→ 3

becomes

aa→ 3; ab→ 3; ac→ 3



B-Tree Performance

If B is not too big, the time for disk
transfers dominate the performance:
• LOOKUP costsO(logB N) disk trans-

fers. (Optimal.)
• INSERT costsO(logB N) disk trans-

fers. (Not optimal.)
• NEXT costsO(1/B) disk transfers on

average, because of caching. (Opti-
mal.)



Outline

• Review B-Trees.

• Results.

• The problem with B-Trees.

• How Streaming B-Trees work.

• The future.



Streaming B-Trees Speed UpINSERT

A Bε tree can, by slowing down LOOKUP by a constant factor
ε, speed up insertion by a large factor.

B-Tree Streaming B-Tree

LOOKUP O(logB N) O
(

logB N
ε

)

INSERT O(logB N) O
(

logB N
εBε

)

NEXT O(1/B) O(1/B)

For example, ifε = 0.5, andB = 210 data items, then LOOKUP

loses a factor of two, and INSERTgains a factor ofεBε = 256.
Larger blocks gain even more.

We have measured> 250-fold speedups.



Outline

• Review B-Trees.

• Results.

• The problem with B-Trees.

• How Streaming B-Trees work.

• The future.



B-Trees Perform Poorly for Streaming
Consider a random insertion for a
database that does not fit in main
memory.
A disk I/O is likely to be required
to obtain the block in which the
pair is to be inserted.
Even if the tree fits in memory,
an entire block must eventually be
written to disk to insert only a few
bytes.

In memory



A Back-of-the-Envelope Performance Analysis
B-Tree performance is determined by the disk hardware, and
by the workload. Here is an example:

Disk hardware: A high-end 15,000 rpm disk:

• 5ms average seek time.
• 90MB/s bandwidth

Workload: Random insertion of 16-byte key-value pairs.
Block size is 4KB. Assume one write per INSERT.

Insertion cost:
Seek to the block: 5.00ms
Read the block: 4KB/(90MB/s) = 0.05ms
Total time 5.05ms
Average bandwidth: 16B/5.05ms= 3168B/s

0.003% of peak disk bandwidth.



B-Tree Hacks Do Not Help Much

Disk

• Big blocks: Queries run faster, but
big blocks do not help insertions.
They also introduce other perfor-
mance issues.

• Clustering: (E.g., cylinder groups,
allocation groups, etc.) Range
queries run faster, but clustering
does not help insertions. Moreover,
as the system ages, clusters become
fragmented, reducing performance.



Outline

• Review B-Trees.

• Results.

• The problem with B-Trees.

• How Streaming B-Trees work.

• The future.



How the Bε Streaming B-Tree Works

Idea: Put
buffers at
internal
nodes.

b → 4

b → 2 c → 8 e → 2

bb → 3;c → 7 z → 9

d → 6a → 3

To LOOKUP, look in root fufer. If not there, recursively look in
the proper subtree. Examples:

• LOOKUP(“a”): not found in root, found in left child.

• LOOKUP(“e”): must traverse all the way to a leaf.

• LOOKUP(“b” ): finds the value at the root, ignoring another
value for “b” at a leaf.



INSERT in a Bε Streaming B-Tree

e → 2

b → 4

a → 3 d → 6

bb → 3;c → 7

b → 2 c → 8

• Store items in the buffer at the root.

• If the root fills up, send many items together to one of the
children. Buffer there if possible. Recurse.

• Disk writes always move a big fraction of a block.



INSERT in a Bε Streaming B-Tree

e → 2

b → 4;ea → 3

a → 3 d → 6

bb → 3;c → 7

b → 2 c → 8

• Store items in the buffer at the root.

• If the root fills up, send many items together to one of the
children. Buffer there if possible. Recurse.

• Disk writes always move a big fraction of a block.



INSERT in a Bε Streaming B-Tree

e → 2

b → 4;ea → 3;ee → 5

a → 3 d → 6

bb → 3;c → 7

b → 2 c → 8

• Store items in the buffer at the root.

• If the root fills up, send many items together to one of the
children. Buffer there if possible. Recurse.

• Disk writes always move a big fraction of a block.



INSERT in a Bε Streaming B-Tree

e → 2

b → 4

a → 3 d → 6;ea → 3;ee → 5

bb → 3;c → 7

b → 2 c → 8

• Store items in the buffer at the root.

• If the root fills up, send many items together to one of the
children. Buffer there if possible. Recurse.

• Disk writes always move a big fraction of a block.



INSERT in a Bε Streaming B-Tree

e → 2

b → 4

a → 3 d → 6

bb → 3;c → 7 ea → 3;ee → 5

b → 2 c → 8

• Store items in the buffer at the root.

• If the root fills up, send many items together to one of the
children. Buffer there if possible. Recurse.

• Disk writes always move a big fraction of a block.



Streaming B-Tree Performance Numbers
In Spring 2006, Jelani Nelson implemented a streaming B-tree
with B = 4096 and fixed-size key-value pairs.
Achieved 17-fold speedup on INSERT, with a slowdown of
about 3-fold for LOOKUP.
We figured that larger blocks would help...



Streaming B-Tree Performance Numbers (largeB)
Sequential INSERTs, followed by randomINSERTs.

B-Tree Bε Tree Speedup
2 ·107 serial 418s 47802/s647s 30911/s 0.6
50,000 random375s 134/s1.4s 34658/s 258
CPU Load 11% 63%

• Bε streaming B-Tree has block size= 1MB, degree= 16.

• For the B-Tree, used Berkeley DB (which employs
special-case code for serialINSERT), block size = 4KB.

• Key-value pairs of varying size, around 16-bytes.

• Haven’t yet measured query cost.



Outline

• Review B-Trees.

• Results.

• The problem with B-Trees.

• How Streaming B-Trees work.

• The future.



Cache-Oblivious Data Structures
We are also investigating the technology ofcache-oblivious
data structures for streaming applications, which provide
several advantages:

• Passive self-tuning: no “voodoo”
parameters. (“How many cylin-
ders belong in an allocation group?”
“What is the right block size?”)

• Provable guarantees on locality
(e.g., most data is stored in sorted
order on disk, thereby guaranteeing
good range query performance).

• No file-systemagingproblems.

Disk

b

fgh

i
j

k

l m

d
e

n
a

c

o

p
q

r

s
t

uvwx
y

z

Preliminary: The cache-oblivious streaming B-tree
implemented by Yoni Fogol may be another 3x faster.



Applications of Streaming B-Trees
• File systems: In the file-system community, one of the

“grand challenges” is to achieve 30,000 file creations per
second, and to handle a trillion files.
Streaming B-trees on a single PC with one disk come near
that performance.
We developed an I/O-only version of the HPCS SSCA#3
benchmark (available fromhighproductivity.org).

• Databases: Many database applications have trouble
loading data fast enough. Achieving 800 INSERT/s in
MySQL is considered a big deal.

We are working to create both a file system and a database
based on streaming B-trees. We’re looking for “customers”.


