MIT CRAIL

Bradley C. Kuszmaul

Filesystems for Streaming Databases

7
210 2

o
24 2

=L
212843 31

}

8141516

OO

171819
OO0

202122
OO0

2324 25

OOO)

26 27 28

OO

29303
OO0

An Important Class of Streaming Applications

e They insert much data, indexed arbitrarily (for example, |
geographical coordinate).

e They query the data, asking for all data inaage of indices.
“Give me all images within distand®1 of (71.3,42.0).”

e Not all the data Is queried.

Performance depends on fast insertions and range queries.

Data Structures for Streaming Applications
or
Streaming B-Trees

Bradley C. Kuszmaul
MIT CRAIL

This work represents a collaboration with Michael A. Bende
of SUNY Stony Brook and Martin Farach-Colton at Rutgers

Students: Jeremy Fineman (MIT), Yoni Fogel (Stony Brook)
Haodong Hu (Stony Brook), and Jelani Nelson (MIT).

Outline

e Review B-Trees.

Dictionaries Store Key-Value Pairs

The problem: Store key-value pairs. Operations
Include

e INSERT(K,V): Insert a key-value paik — V.
e LOOKUP(k): Find the value associated with

Dictio ary

& m g, onclbr gl 18 a key.
40000 b st worids

e NEXT(K): Find the smallest key bigger than
k.

A range query computes some function on all the key-value
pairs whose keys are in a specified range. Range queries c
programmed using EIXT.

B-Trees are Disk-Efficient Dictionaries

P S it
= A M
= // < \\\

ldea: Whenever you transfer data from disk to memory, try 1
transfer a wholdlock of useful data.
The data structure:

e Data Is organized into a tree with blocks of s&e
e For unit-sized data, fanout 3(B).

e The tree depth i®(loggN), whereN is the number of
elements in the dictionary.

Example INSERT(“ac”, 3) into a B-Tree

— \
" \\ e~
==

aa— 3;ac— 3

becomes

i
/////\ \\\

aa— 3; b—>3 c— 3

<

T

N

————~

B-Tree Performance

If B Is not too big, the time for disk
transfers dominate the performance:

e LOOKUP costsO(loggN) disk trans-
fers. (Optimal.)

e INSERT costsO(loggN) disk trans-
fers. (Not optimal.)

e NEXT costsO(1/B) disk transfers on
average, because of caching. (Opti-
mal.)

Outline

e Results.

Streaming B-Trees Speed UPNSERT

A Be tree can, by slowing down®oOKuUP by a constant factor
g, speed up insertion by a large factor.

B-Tree Streaming B-Tree
Lookur O(loggN) O ('OQBN)

€

cBt
NEXT O(1/B) O(1/B)
For example, i€ = 0.5, andB = 219 data items, then hokuUP

loses a factor of two, andNsSERTgains a factor o€B° = 256
Larger blocks gain even more.

INSERT O(loggN) O('OQBN)

We have measured 250-fold speedups.

Outline

e The problem with B-Trees.

B-Trees Perform Poorly for Streaming

Consider a random insertion for a
database that does not fit iIn main
memory.

A disk 1/O is likely to be required -

to obtain the block in which the/ L~
N A \\\
pair Is to be inserted. E == e =

Even If the tree fits In memory,

an entire block must eventually be
written to disk to insert only a few
bytes.

A Back-of-the-Envelope Performance Analysis

B-Tree performance Is determined by the disk hardware, ar
by the workload. Here is an example:

Disk hardware: A high-end 15000 rpm disk:

e bms average seek time.
e 90MB/s bandwidth

Workload: Random insertion of 16-byte key-value pairs.
Block size is 4KB. Assume one write peX$ERT.

Insertion cost:

Seek to the block: 5.00ms
Read the block: 4KB/(90MB/s) = 0.05ms
Total time 5.05ms

Average bandwidth: 18/5.05ms= 3168B/s
0.003% of peak disk bandwidth.

B-Tree Hacks Do Not Help Much

e Big blocks. Queries run faster, but
big blocks do not help insertions.
They also introduce other perfor-

mance Issues.

Q . e Clustering: (E.g., cylinder groups,
allocation groups, etc.) Range
gueries run faster, but clustering
does not help insertions. Moreover,
as the system ages, clusters becon
fragmented, reducing performance.

Outline

e How Streaming B-Trees work.

How the B* Streaming B-Tree Works

Idea: Put { == —

buffers at

internal - - btwé \;

nodes. S \\\\;f\\\x

b—2 c— 8 e—2

To LOOKUP, look In root fufer. If not there, recursively look ir
the proper subtree. Examples:

e LOOKUP(“a”): not found in root, found in left child.
e LOOKUP(“e”): must traverse all the way to a leaf.

e LOOKUP(“D”): finds the value at the root, ignoring anothe
value for “b” at a leaf.

INSERTIN a B®* Streaming B-Tree

~1b—4

T

/ a— 3 // dii
—bb— 3;c—7 ~
\
b—2 C— 8 e— 2

e Store items in the buffer at the root.

e If the root fills up, send many items together to one of the
children. Buffer there If possible. Recurse.

e Disk writes always move a big fraction of a block.

INSERTIN a B®* Streaming B-Tree

-~ b—4ea— 3

T

/ a— 3 // dii
—bb— 3;,c—7 ~
\
b—2 C— 8 e— 2

e Store items in the buffer at the root.

e If the root fills up, send many items together to one of the
children. Buffer there If possible. Recurse.

e Disk writes always move a big fraction of a block.

INSERTIN a B®* Streaming B-Tree

-~ b—4:ea— 3;eel—~ 5

T

/ a— 3 // dii
—bb— 3;c—7 ~
\
b—2 C— 8 e— 2

e Store items in the buffer at the root.

e If the root fills up, send many items together to one of the
children. Buffer there If possible. Recurse.

e Disk writes always move a big fraction of a block.

INSERTIN a B®* Streaming B-Tree

~1b—4

T

a— 3 // d—6ea— 3;ee— 5
—bb— 3;c— 7 ~
b— 2 c— 8 e — 2

e Store items in the buffer at the root.

e If the root fills up, send many items together to one of the
children. Buffer there If possible. Recurse.

e Disk writes always move a big fraction of a block.

INSERTIN a B®* Streaming B-Tree

~1b—4

T

a— 3 // d—6
—hbb — 3;c— 7 —ea—3;ee— 5
bh— 2 c— 8 e— 2

e Store items in the buffer at the root.

e If the root fills up, send many items together to one of the
children. Buffer there If possible. Recurse.

e Disk writes always move a big fraction of a block.

Streaming B-Tree Performance Numbers

In Spring 2006, Jelani Nelson implemented a streaming 8-t
with B = 4096 and fixed-size key-value pairs.

Achieved 17-fold speedup om$&ERT, with a slowdown of
about 3-fold for LOOKUP.

We figured that larger blocks would help...

Streaming B-Tree Performance Numbers (largeB)

Sequential NSERTS, followed by randoOmMNSERTS

B-Tree Bt Tree | Speedup
2-10" serial |418s 47802/?473 30911/s 0.6

50,000 randonB875s 134/s1.4s 34658/s 258
CPU Load 11% 63%

e B streaming B-Tree has block sizel MB, degree= 16.

e For the B-Tree, used Berkeley DB (which employs
specilal-case code for seri@lseRT), block size = 4KB.

e Key-value pairs of varying size, around 16-bytes.
e Haven't yet measured query cost.

Outline

e The future.

Cache-Oblivious Data Structures

We are also investigating the technologycathe-oblivious
data structures for streaming applications, which provide
several advantages:

e Passive self-tuning: no “voodoo”
parameters. (“How many cylin-
ders belong in an allocation group?’
“What Is the right block size?”)

e Provable guaranteeson locality
(e.g., most data Is stored In sorte
order on disk, thereby guaranteeing
good range query performance).

e No file-systemaging problems.

Preliminary: The cache-oblivious streaming B-tree
Implemented by Yoni Fogol may be another 3x faster.

Applications of Streaming B-Trees

e File systems: In the file-system community, one of the
“grand challenges” Is to achieve 3O file creations per
second, and to handle a trillion files.

Streaming B-trees on a single PC with one disk come ne
that performance.

We developed an I/O-only version of the HPCS SSCA#3
benchmark (available fromm ghpr oductivity. orQg).

e Databases: Many database applications have trouble
loading data fast enough. Achieving 8Q0SIERT'S In
MySQL Is considered a big deal.

We are working to create both a file system and a database
based on streaming B-trees. We're looking for “customers”.

