
Filesystems for Streaming Databases
Bradley C. Kuszmaul∗

Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory (MIT CSAIL)
bradley@mit.edu

Abstract
Workloads for high-performance streaming databases oftencon-
tain many writes of small data blocks (for example, of metadata)
followed by large subrange queries. Most of today’s file systems
and databases either cannot provide adequate performance for the
write phase, the read phase, or both. The supercomputing technolo-
gies group at MIT CSAIL has been investigating cache-aware and
cache-oblivious data structures for disk-resident streaming data.
We investigated the cache-aware buffered repository tree (BRT).
A BRT with a block size ofB can theoretically perform a write in
time O((logB n)/

√
B), as compared to B-tree’sO(logB N), and can

perform reads only a constant factor slower than the B-tree.We
implemented a prototype of a cache-aware streaming B-tree.For 1-
megabyte blocks the streaming B-tree achieves a 230-fold speedup
for random insertions, at a cost of slowing down serial insertions by
factor of 6. Preliminary measurements on the SSCA#3 IO bench-
mark show a 1.4-fold speedup using stream B-trees instead ofstan-
dard B-trees. We have also designed a cache-oblivious data struc-
ture called the cache-oblivious lookahead tree, which should be
able to achieve similar bounds without requiring us to tune for the
block size.

1. Introduction
The time to perform input/output can dominate the performance

of many embedded applications. The performance of many em-
bedded applications is limited by how fast they can perform large
numbers of operations on small amounts of data, ormicrodata.
These applications would like to store the microdata inmicrofiles
that contain only a few bytes of information, indexing the micro-
data with a file name that describes the site on the genome. For
example, in the area of synthetic-aperture radar (SAR) knowledge
formation, an application may write many microfiles, each contain-
ing a small image, where the file name of the image is an encoding
of its coordinates. Later processing steps perform range queries on
the file names, extracting all the images that relate to a particular
geographic region. These are but two applications that are ham-
pered by the inability of today’s storage systems to handle large
volumes of microdata efficiently. This research project is aimed
at understanding and developing the technology ofmicrodata stor-
age systems, which perform as well for microfiles as they do for
macrofiles.

Traditional file systems overcome the large cost of accessing disk
by organizing data into blocks. To gain performance, the block
size is tuned to amortize the disk-head positioning time over the
data transfer. For microfile operations, performance is typically
dominated by the cost of updating a file’smetadata, such as its
file name or file-structure index. Even if microfiles are operated
on in batches, existing file systems cannot amortize the disk-head
positioning time over the actual operations to be performedon the
data. Thus, high-end applications that perform a large volume of
microdata operations use only a tiny fraction of the available disk
bandwidth.

2. B-trees perform poorly on microdata
The performance of a disk-storage system depends on three fac-

tors: the hardware, the storage structure, and the workload. For

∗This work was supported in part by the Singapore-MIT Alliance
and by NSF Grants CNS-0305606 and ACI-0324974

a typical hardware configuration implemented with a traditional
B-tree storage structure, let us examine the performance ofa microdata-
intensive workload. In this analysis, we shall make severalassump-
tions favorable to the traditional storage structure, because we shall
use it as a “straw man” to compare with our proposed microdata
storage structure.

For hardware, suppose that our disk-storage system is config-
ured with 10 high-performance SCSI 150GB disk drives rotating
at 15,000 RPM, yielding a 2ms average rotational latency for each
drive. The average seek time of each disk is 4ms, and its mini-
mum track-to-track seek time is 0.6ms. These parameters yield a
6ms average head-positioning latency and a 2.6ms track-to-track
positioning latency. Each drive can sustain data transfer rates of
about 90MB/s and contains on the order of 100,000 tracks. Since
we have 10 drives, the peak sustainable bandwidth of the storage
system is about 900MB/s.

Let us assume that the traditional disk-storage structure is a file
structure employing a B-tree variant [3,6,7,9,13,14], as opposed to
a log-structured file system [10], using 4,096-byte blocks. Let us
also assume, to give this file system the benefit, that metadata and
data are written to nearby locations on the disk, and thus we only
need to pay 1 disk seek for both.1 Our analysis exploits an unfortu-
nate property of B-trees: they age over time, leading the blocks to
become randomly distributed across disk [12, 14]. (Journaling file
systems age poorly too [5].) Even when the file system attempts to
cluster directories together [7], many disk blocks can end up placed
far from the their parents on disk.

Suppose that our workload is a high-end microdata-intensive ap-
plication, such as a synthetic-aperture radar (SAR) knowledge for-
mation, consisting of two phases. In Phase I, the application seri-
ally might write many 100-byte microfiles to different directories
in the file system. Each write also updates about 100 bytes of meta-
data. Phase II might consist of a series ofrange queries, each of
which reads many files that are lexicographically adjacent to each
other in the file system.

Let us now examine how well this traditional storage system per-
forms on this microdata-intensive workload.

For Phase I, the different files likely reside on different tracks,
because there are so many tracks. In order not to spend a full seek
on each write, let us assume that the application employs a huge
number of threads to perform the writes and that disk-head move-
ment is scheduled optimally. Under these favorable assumptions,
the application suffers only the 2.6ms track-to-track positioning la-
tency per write, rather than the full 6ms average head-positioning
latency. Since each write is only 200 bytes, microdata and metadata
combined, the bandwidth achieved to each disk drive is 77KB/s, or
770KB/s for the 10-disk system. Despite these heroic measures and
optimistic assumptions, the traditional file system achieves only
about 0.09% of the peak disk bandwidth on Phase I.

For Phase II, let us assume that the traditional file system man-
ages to pack each of the 4,096-byte blocks with the metadata for
about 40 lexicographically adjacent files. After performing a ran-
dom seek (6ms) to locate the start of the range, the 4,096 bytes of
metadata can be read (0.05ms), and then the process repeats for the
next block in the range, because the file system cannot guarantee
proximity between adjacent blocks in the range. Thus, the system
achieves 680KB/s of bandwidth, or about 0.07% of the 10 disks’

1The situation would be even worse if the metadata is not placed
next to the data. Moreover, some file systems require severaldisk
writes to create a single file [10].



30

1 4 6 8 12 13 14 15 19 22 29 31 42 65

I(19) I(27) I(90)

I(3) I(15) D(27) I(42)18

I(7) I(12) D(15)10

Figure 1: A streaming B-tree in which each node maintains a 1-block
buffer. Each internal node contains a set of keys (e.g., 18on the root), as
well as a list of insertion and deletion commands (shown as I and D.) A
BRB-tree operates on key-value pairs, but here we show only the keys.

collective bandwidth. Making the B-tree blocks larger can help:
16KB blocks would achieve 2.7MB/s, but to achieve half the band-
width of just a single disk would require blocks of size 540KB.
Large blocks can introduce many other problems for B-trees,how-
ever, such as internal fragmentation, where large amounts of mem-
ory are wasted when only a few bytes are needed from a block.
Moreover, manipulating data within large blocks is cumbersome.

If instead of using a B-tree file system, we were to use a log-
structured file system [10], we would still have performanceprob-
lems for our microdata application. During Phase I, a log-structured
file system wold run at full disk bandwidth. During Phase II, how-
ever, the range queries would still run slowly, since the micro-
files would be distributed on disk in the order they were written,
rather than being grouped locally according to their names.A log-
structured file system can further confound programmers by giving
different performance numbers every time a range query runs, since
these file systems require a “cleaning” task that moves data around
on disk in unpredictable ways.

Thus, log-structured file systems can make Phase I run fast, and
B-tree file systems have the potential to make Phase II run fast (at
least with large blocks). Is there a storage structure that can give
good performance on both phases?

3. Streaming B-trees
We propose to improve the performance of the traditional B-tree

storage structure by exploiting a new storage structure, called a
streaming B-tree, for short, which we have developed in collab-
oration with Michael Bender of SUNY at Stony Brook and Mar-
tin Farach-Colton of Rutgers. Our data structures draw inspiration
from a data structure called a buffered repository tree which was
briefly described in [1, 2], and has not, to our knowledge, previ-
ously been implemented.

The layout of one kind of streaming B-tree is shown in Figure 1,
wherer = 2. The data structure is a B-tree in which each node
also maintains a 1-blockbuffer. When a key-value pair is inserted,
instead of traversing the tree to store the value at the leaf,as in
a normal B-tree, the pair is simply inserted into the buffer of the
root. When a node’s buffer fills up, the buffered data is properly
dispersed to the appropriate children of the node. When a block is
transfered from disk to main memory, an average of 1/r of a block’s
worth of data is productively modified. Eventually, the buffered
data migrates down to the leaves.

To perform a query on a BRB-tree, first examine the buffer at the
root. If the value is not found, then search in the appropriate child
recursively. In the example shown in Figure 1, if we were to search
for key 42, we would find an “insert 42” command in the root, for
some valuev, indicating that key 42 is in the tree. If we were to
search for key 14, we would find no mention of 14 in the root or in
the appropriate child of the root (in this case the left child), but we
would find it eventually at a leaf.

4. Performance
In Spring 2006, Jelani Nelson implemented a buffered reposi-

tory tree using 4KiB blocks, and achieved a a 17-fold speedupfor

B-tree Streaming B-tree
insertions bandwidth insertions bandwidth

Serial I/O 140,000 /s 11.0 MB/s 22100 /s 1.7 MB/s
Random I/O 180 /s 0.014 MB/s 42200 /s 3.2 MB/s

Figure 2: Performance of B-trees vs. streaming B-trees on serial and
random I/O.

insertions of 16-byte key-value pairs, with a 3-fold slowdown for
random searches [8].

We recently implemented a new data structure that employs 1MiB
blocks. We compared our implementation to the Berkeley Database
(BDB) [11]. We configured BDB to use no transactions or locking,
and to use a 512MiB cache. We first performed 107 sequential in-
sertions (that is, serial I/O), comprising 783MB of data, then mea-
sured the performance of insertions of randomly chosen keys(ran-
dom I/O). Figure 2 shows the performance. The streaming B-tree
achieves over 230-fold speedup for random I/O, compared to the
B-tree. For serial I/O the streaming B-tree performs about 6times
slower than the traditional B-trees. Our streaming B-tree has not
been optimized yet, and we believe that we can improve both the
serial and random performance.

We also built a version of the SSCA#3 I/O Benchmark [4] using
the data structures. We achieved 5.6 MB/s with B-trees, 8.2 MB/s
with our streaming B-tree. Using ordinary file I/O we achieve
15.3MB/s.

5. References
[1] G. S. Brodal and R. Fagerberg. Lower bounds for external

memory dictionaries. InProceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 546–554, 2003.

[2] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. R. Westbrook. On external memory graph traversal. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 859–860, 2000.

[3] D. Comer. The ubiquitous B-tree.ACM Comput. Surv.,
11(2):121–137, June 1979.

[4] HPCS challenge benchmarks scalable synthetic compact
application — SSCA#3: Sensor processing and knowl-
edge formation. MIT Lincoln Laboratory,http://www.
highproductivity.org/SSCABmks.htm, 2005.

[5] C. Loizides. Journaling filesystem fragmentation
project. http://www.informatik.uni-frankfurt.
de/∼loizides/reiserfs/agetest.html, 2004.

[6] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX.Computer Systems, 2(3):181–197,
1984.

[7] L. W. McVoy and S. R. Kleiman. Extent-like performance
from a UNIX file system. InUSENIX Winter 1991 Tech.
Conf., pp. 33–43, Dallas, TX, USA, 1991.

[8] J. Nelson. External-memory search trees with fast insertions.
Master’s thesis, MIT EECS, 2006.

[9] H. T. Reiser. Reiser file system white paper.http://www.
namesys.com, 2002.

[10] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system.ACM Transactions
on Computer Systems, 10(1):26–52, Feb. 1992. , Volume 10,
Number 1, February.

[11] Sleepycat Software. The Berkeley Database.http://www.
sleepycat.com, 2005.

[12] K. A. Smith and M. I. Seltzer. File system aging - increasing
the relevance of file system benchmarks. InProc. 1997 ACM
SIGMETRICS Conf. on Measurement and Modeling of Com-
puter Systems, pp. 203–213, Seattle, Washington, 1997.

[13] A. Sweeny, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the xfs file system. InProceed-
ings of the 1996 USENIX Technical Conference, pp. 1–14,
San Diego, CA, Jan. 1996.

[14] K. Thompson. Unix implementation.Bell System Technical
Journal, 57(6), July–Aug. 1978.


