Filesystems for Streaming Databases

Bradley C. Kuszmauil
Massachusetts Institute of Technology Computer Sciendéatificial Intelligence Laboratory (MIT CSAIL)
bradl ey@r t. edu

Abstract

Workloads for high-performance streaming databases aften
tain many writes of small data blocks (for example, of metada
followed by large subrange queries. Most of today’s file eyt
and databases either cannot provide adequate performamntef
write phase, the read phase, or both. The supercomputihgake
gies group at MIT CSAIL has been investigating cache-awatke a
cache-oblivious data structures for disk-resident stiegndata.
We investigated the cache-aware buffered repository B&TY).

A BRT with a block size oB can theoretically perform a write in
time O((logg n)/+/B), as compared to B-tree@(loggN), and can
perform reads only a constant factor slower than the B-tidle.
implemented a prototype of a cache-aware streaming Bffi@el-
megabyte blocks the streaming B-tree achieves a 230-feledsp
for random insertions, at a cost of slowing down serial itisas by
factor of 6. Preliminary measurements on the SSCA#3 |0 bench
mark show a 1.4-fold speedup using stream B-trees instestdiof
dard B-trees. We have also designed a cache-oblivious ttata s
ture called the cache-oblivious lookahead tree, which lshbe
able to achieve similar bounds without requiring us to tuoretlie
block size.

1. Introduction
The time to perform input/output can dominate the perforcean

of many embedded applications. The performance of many em-

bedded applications is limited by how fast they can perfcarge
numbers of operations on small amounts of datam@rodata
These applications would like to store the microdataniarofiles
that contain only a few bytes of information, indexing thecroi

a typical hardware configuration implemented with a tradil
B-tree storage structure, let us examine the performanaendérodata-
intensive workload. In this analysis, we shall make sewesalimp-
tions favorable to the traditional storage structure, heeave shall
use it as a “straw man” to compare with our proposed microdata
storage structure.

For hardware, suppose that our disk-storage system is eonfig
ured with 10 high-performance SCSI 150GB disk drives rotati
at 15000 RPM, yielding a 2ms average rotational latency for each
drive. The average seek time of each disk is 4ms, and its mini-
mum track-to-track seek time is@ns. These parameters yield a
6ms average head-positioning latency and @3 track-to-track
positioning latency. Each drive can sustain data transfrsrof
about 90MB/s and contains on the order of 1D tracks. Since
we have 10 drives, the peak sustainable bandwidth of thagsor
system is about 900MB/s.

Let us assume that the traditional disk-storage structueefile
structure employing a B-tree variant [3,6,7,9,13, 14], gzosed to
a log-structured file system [10], using096-byte blocks. Let us
also assume, to give this file system the benefit, that metaatat
data are written to nearby locations on the disk, and thusnie o
need to pay 1 disk seek for bathOur analysis exploits an unfortu-
nate property of B-trees: they age over time, leading theksl@o
become randomly distributed across disk [12, 14]. (Joungdile
systems age poorly too [5].) Even when the file system atteiopt
cluster directories together [7], many disk blocks can gnglaced
far from the their parents on disk.

Suppose that our workload is a high-end microdata-interss
plication, such as a synthetic-aperture radar (SAR) kndgédeor-
mation, consisting of two phases. In Phase I, the applicatéeri-

data with a file name that describes the site on the genome. Forally might write many 100-byte microfiles to different ditedes

example, in the area of synthetic-aperture radar (SAR) ledye
formation, an application may write many microfiles, eachtam-
ing a small image, where the file name of the image is an engodin
of its coordinates. Later processing steps perform rangéegion
the file names, extracting all the images that relate to acpdat
geographic region. These are but two applications that ane- h
pered by the inability of today’s storage systems to hanaitgel
volumes of microdata efficiently. This research projectime
at understanding and developing the technologyiafodata stor-
age systemswhich perform as well for microfiles as they do for
macrofiles.

Traditional file systems overcome the large cost of accgshigk
by organizing data into blocks. To gain performance, thelblo
size is tuned to amortize the disk-head positioning time ole
data transfer. For microfile operations, performance iscally
dominated by the cost of updating a fileisetadata such as its
file name or file-structure index. Even if microfiles are opeda
on in batches, existing file systems cannot amortize the tukskl
positioning time over the actual operations to be performethe
data. Thus, high-end applications that perform a largenielof
microdata operations use only a tiny fraction of the avédalisk
bandwidth.

2. B-trees perform poorly on microdata

The performance of a disk-storage system depends on three fa
tors: the hardware, the storage structure, and the workldaui

*This work was supported in part by the Singapore-MIT Allianc
and by NSF Grants CNS-0305606 and ACI-0324974

in the file system. Each write also updates about 100 bytegtd-m
data. Phase Il might consist of a seriesafige querieseach of
which reads many files that are lexicographically adjacemzch
other in the file system.

Let us now examine how well this traditional storage system p
forms on this microdata-intensive workload.

For Phase |, the different files likely reside on differemicks,
because there are so many tracks. In order not to spend @&kl s
on each write, let us assume that the application employsgya hu
number of threads to perform the writes and that disk-heagemo
ment is scheduled optimally. Under these favorable assongt
the application suffers only the@ms track-to-track positioning la-
tency per write, rather than the full 6ms average head-ipaosiigy
latency. Since each write is only 200 bytes, microdata artddaga
combined, the bandwidth achieved to each disk drive is 78K&/
770KB/s for the 10-disk system. Despite these heroic measnd
optimistic assumptions, the traditional file system ackseonly
about 009% of the peak disk bandwidth on Phase I.

For Phase I, let us assume that the traditional file system ma
ages to pack each of the@B6-byte blocks with the metadata for
about 40 lexicographically adjacent files. After perforghia ran-
dom seek (6ms) to locate the start of the range, 1088l bytes of
metadata can be read @@ms), and then the process repeats for the
next block in the range, because the file system cannot gearan
proximity between adjacent blocks in the range. Thus, tistesy
achieves 680KB/s of bandwidth, or abou®®% of the 10 disks’

IThe situation would be even worse if the metadata is not place
next to the data. Moreover, some file systems require sesistal
writes to create a single file [10].

“‘18‘ ‘ 1(3) 1(15) D(27) 1(42) ‘

‘ ‘10‘ ‘ 1(7) 1(12) D(15) ‘ ‘\‘30‘\‘ 1(19) 1(27) 1(90) ‘

‘ 1468 ‘ ‘ 12131415 ‘ ‘ 192229 ‘ ‘ 314265 ‘

Figure 1. A streaming B-tree in which each node maintains a 1-block
buffer. Each internal node containsa set of keys(e.g., 18on theroot), as
well asalist of insertion and deletion commands (shown as| and D.) A
BRB-tree operates on key-value pairs, but here we show only the keys.

collective bandwidth. Making the B-tree blocks larger cafph
16KB blocks would achieve.ZMB/s, but to achieve half the band-
width of just a single disk would require blocks of size 540KB
Large blocks can introduce many other problems for B-trees-
ever, such as internal fragmentation, where large amodimtem-

ory are wasted when only a few bytes are needed from a block.

Moreover, manipulating data within large blocks is cumbars.

If instead of using a B-tree file system, we were to use a log-
structured file system [10], we would still have performapogb-
lems for our microdata application. During Phase |, a logettired
file system wold run at full disk bandwidth. During Phase tyh
ever, the range queries would still run slowly, since thermic
files would be distributed on disk in the order they were \eritt
rather than being grouped locally according to their namdsg-
structured file system can further confound programmers\bygy
different performance numbers every time a range query, gimse
these file systems require a “cleaning” task that moves datand
on disk in unpredictable ways.

Thus, log-structured file systems can make Phase | run fast, a
B-tree file systems have the potential to make Phase Il rur{das
least with large blocks). Is there a storage structure thatgive
good performance on both phases?

3. Streaming B-trees

We propose to improve the performance of the traditionale®g-t
storage structure by exploiting a new storage structurdecca
streaming B-tregfor short, which we have developed in collab-
oration with Michael Bender of SUNY at Stony Brook and Mar-
tin Farach-Colton of Rutgers. Our data structures drawiiaspn
from a data structure called a buffered repository tree wkies
briefly described in [1, 2], and has not, to our knowledgeyipre
ously been implemented.

The layout of one kind of streaming B-tree is shown in Figure 1
wherer = 2. The data structure is a B-tree in which each node
also maintains a 1-blodiuffer. When a key-value pair is inserted,
instead of traversing the tree to store the value at the &=afn
a normal B-tree, the pair is simply inserted into the buffethe
root. When a node’s buffer fills up, the buffered data is priype
dispersed to the appropriate children of the node. Wheneklito
transfered from disk to main memory, an average/ofdf a block’s
worth of data is productively modified. Eventually, the leuéd
data migrates down to the leaves.

To perform a query on a BRB-tree, first examine the bufferat th
root. If the value is not found, then search in the approgrédtld
recursively. In the example shown in Figure 1, if we were tarce
for key 42, we would find an “insert 42" command in the root, for
some valuey, indicating that key 42 is in the tree. If we were to
search for key 14, we would find no mention of 14 in the root or in
the appropriate child of the root (in this case the left childit we
would find it eventually at a leaf.

4. Performance

In Spring 2006, Jelani Nelson implemented a buffered reposi
tory tree using 4KiB blocks, and achieved a a 17-fold speddup

B-tree Streaming B-tree
insertions bandwidth insertions bandwidth
Serial I/0 140,000/s 11.0MB/s 22100/s 1.7 MB/s
Random 1/O 180/s 0.014 MB/s 42200/s 3.2 MB/s

Figure 2: Performance of B-trees vs. streaming B-trees on serial and
random /0.

insertions of 16-byte key-value pairs, with a 3-fold slowhofor
random searches [8].

We recently implemented a new data structure that employB 1M
blocks. We compared our implementation to the Berkeley Rata
(BDB) [11]. We configured BDB to use no transactions or logkin
and to use a 512MiB cache. We first performed $8quential in-
sertions (that is, serial I1/0), comprising 783MB of data&ritimea-
sured the performance of insertions of randomly chosen (ays
dom I/O). Figure 2 shows the performance. The streamingeB-tr
achieves over 230-fold speedup for random 1/O, compareti€o t
B-tree. For serial /0 the streaming B-tree performs abainés
slower than the traditional B-trees. Our streaming B-trag hot
been optimized yet, and we believe that we can improve bath th
serial and random performance.

We also built a version of the SSCA#3 /O Benchmark [4] using
the data structures. We achieved 5.6 MB/s with B-trees, 82sM
with our streaming B-tree. Using ordinary file /O we achieve
15.3MB/s.

5. References

[1] G. S. Brodal and R. Fagerberg. Lower bounds for external
memory dictionaries. IProceedings of the ACM-SIAM Sym-
posium on Discrete Algorithmpp. 546-554, 2003.

[2] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. R. Westbrook. On external memory graph traversal. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms (SODApp. 859-860, 2000.

[3] D. Comer. The ubiquitous B-treeACM Comput. Sury.
11(2):121-137, June 1979.

[4] HPCS challenge benchmarks scalable synthetic compact
application — SSCA#3: Sensor processing and knowl-
edge formation. MIT Lincoln Laboratoryhttp://www.
hi ghproductivity. or g/ SSCABrks. ht m 2005.

[5] C. Loizides. Journaling filesystem fragmentation
project. http://ww. informatik.uni-frankfurt.
de/ ~l oi zi des/ rei serfs/ aget est. htm , 2004.

[6] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIXComputer System2(3):181-197,
1984.

[7] L. W. McVoy and S. R. Kleiman. Extent-like performance
from a UNIX file system. INUSENIX Winter 1991 Tech.
Conf, pp. 33-43, Dallas, TX, USA, 1991.

[8] J. Nelson. External-memory search trees with fast bnses.
Master’s thesis, MIT EECS, 2006.

[9] H. T. Reiser. Reiser file system white papktt p: // www.
namesys. com 2002.

[10] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file syste&CM Transactions
on Computer System$0(1):26-52, Feb. 1992. , Volume 10,
Number 1, February.

[11] Sleepycat Software. The Berkeley Databdsd.p: / / www.
sl eepycat . com 2005.

[12] K. A. Smith and M. I. Seltzer. File system aging - incrieas
the relevance of file system benchmarksPhoc. 1997 ACM
SIGMETRICS Conf. on Measurement and Modeling of Com-
puter System$p. 203-213, Seattle, Washington, 1997.

[13] A. Sweeny, D. Doucette, W. Hu, C. Anderson, M. Nishimoto
and G. Peck. Scalability in the xfs file system.Rnoceed-
ings of the 1996 USENIX Technical Conferenpp. 1-14,
San Diego, CA, Jan. 1996.

[14] K. Thompson. Unix implementatiorBell System Technical
Journal 57(6), July—Aug. 1978.

