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Introduction1

Chip multiprocessors (CMPs) will dominate commercial 
processor designs for at least the next decade, during which 
we will likely see an annual doubling of the number of 
processor cores integrated onto a single chip. This trend is 
expected in both desktop and server processors, as well as 
within high-performance embedded systems where, in fact, 
the phenomenon first appeared. Both Intel’s IXP network 
processors (16 cores) and the MPOC project (8 cores) from 
Hewlett-Packard were early embedded CMP designs for 
use in routers and printers, respectively. The force behind 
this trend is technology-based: it is possible to efficiently 
scale a CMP design by increasing the number of cores 
while maintaining or reducing overall power consumption 
by reducing clock frequency. As long as the increase in 
cores offsets the reduction in clock frequency, peak system 
performance will improve; or, conversely, a given level of 
performance can be maintained with less power. 

Of course, achieving peak system performance depends on 
how well a target application can be mapped onto system 
resources. Notably, CMP architectures provide thread-level 
parallelism, thus suggesting that performance-sensitive 
applications will need to be thread-parallel. In the 
embedded systems context, one can consider tailoring the 
application, the processor, or both in order to meet system 
constraints. While this enlarged design landscape provides 
great flexibility, it also creates design challenges. 

Thus, the use of CMPs in embedded systems has strong 
implications for high-performance embedded computing. In 
this abstract, we highlight some of these implications with 
several examples drawn from our current research program 
exploring the design and use of CMPs. In particular, we 
illustrate the following topics. 

1. CMP Organization. Specifically, how the use of 
multiple processor core types within a CMP 
impacts system efficiency and complexity.  

2. Achieving Performance/Area Efficiency. We 
focus on a novel CMP instruction delivery 
hierarchy built with μ -caches. 

3. Promising Thread-Parallel Applications. We 
illustrate how an embedded CMP excels at 
implementing a Hidden Markov Model-based 
bioinformatics application. 
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CMP Organization: Evaluating Heterogeneity 
While replicating cores is an efficient strategy, architects 
are confronted with a basic question: what type of core 
should be replicated? A given die area can accommodate: 
many small, simple cores; fewer cores of a larger more 
sophisticated variety; or some combination of the two. 
Thus, in CMPs it is common to see either many simple 
processors or a moderate quantity of high performance 
cores. The first solution meets the needs of computing 
environments characterized by higher thread parallelism, 
while the second better accommodates scenarios with lower 
thread parallelism and higher individual thread complexity. 

Heterogeneous CMP systems, consisting of a combination 
of processor cores of varying type on the same chip, 
represent a compromise between the above alternatives. 
The motivation comes from the observation that a multi-
programmed computing environment may present threads 
of execution with different hardware resource requirements, 
and that such needs may vary over time. In embedded 
systems, such as Intel’s IXP, heterogeneous cores are the 
dominant model. With a heterogeneous CMP, an 
appropriate mapping of different program threads to 
heterogeneous processor cores can maximize resource 
utilization and, at the same time, achieve a high degree of 
inter-thread parallelism. 

In order to take advantage of a heterogeneous architecture, 
an appropriate policy to map running tasks to processor 
cores must be determined. The overall goal of such a 
strategy must be to maximize the performance of the whole 
system by accurately exploiting its resources. The control 
mechanism must take into account the heterogeneity of the 
system and of the workload, and the varying behavior of the 
threads over time. Moreover, it must be easily 
implementable and introduce as little overhead as possible. 

In a recent study [1], we show that a heterogeneous system 
adopting a dynamic assignment policy is able to 
accommodate a variety of degrees of thread parallelism 
more efficiently than both a homogeneous and a 
heterogeneous system adopting a static assignment policy. 
Our results, based on a collection of 11 sample programs, 
show that heterogeneity can provide a 20%-80% 
improvement in system performance compared to a 
comparable homogeneous CMP, and that dynamic thread 
migration can achieve a further 20%-40% gain. 

Design Goals: Performance/Area Efficiency 
CMP architectures place a relatively novel emphasis on the 
area efficiency of the replicated processor cores; in 
particular on the performance/area efficiency of the cache 



 

hierarchy. In single-processor designs, cache hierarchies 
have traditionally focused on computational performance, 
with relatively little emphasis placed on area efficiency.  

In recent work [2], we explore the use of very small 
instruction caches, called μ-caches, which range in size 
from 64 to 256 bytes. In a CMP system with L1 instruction 
μ-caches, processors are arranged in clusters that share an 
on-chip L2 instruction cache. This shared cache is 
configured much like a traditional L1 instruction cache. 
Provided that the use of μ-caches does not reduce 
performance greatly, a substantial area savings can be 
achieved due to the reduced number of L1 I-caches. If, for 
example, the traditional I-cache accounts for a third of total 
core area—the other components being the processor core 
proper and the data cache (D-cache)—then, in the best case, 
effectively removing the I-cache from each core will allow 
a cluster of 4 cores with μ-caches to occupy roughly the 
same area as a traditional 3-core cluster.  

To evaluate the effectiveness of μ-caches, we performed a 
simulation-based experimental study that compares the 
performance/area efficiency of μ-caches to that of 
traditional instruction cache hierarchies. Our study has two 
crucial characteristics. First, rather than trying to 
demonstrate that μ-caches are effective in the general case, 
we restrict our study to applications that are commonly or 
easily deployed on clustered CMP processors and consist of 
pipelines of processing kernels, namely 
networking/communications and bioinformatics. These 
kernels are used to construct workloads that correspond to 
the three natural approaches to mapping programs to 
multiple cores. Second, we obtain performance and area 
estimates by the use of a commercial design environment.  

For these workloads, a cluster with μ-caches can maintain 
the same performance with 25% of the area, or provide 
25% greater performance in the same amount of area. 

Thread-Parallel Application in Bioinformatics 
Certain classes of compute-intensive, thread-parallel 
applications are well-suited to CMP-based systems. To 
explore how new levels of performance may be achieved, 
we recently implemented and described [4] a CMP-based 
version of a scientific workload drawn from bioinformatics: 
the HMMer program [3] for protein motif finding. HMMer 
compares protein sequences to a database of motifs – 
sequences known to occur, with some variation, in a large 
family of other proteins. These motifs are represented as 
hidden Markov models (HMMs), which allows HMMer to 
search for them in a protein using well-developed 
mathematical machinery for parsing discrete sequences 
with an HMM. Because HMMer works on a large database 
of motifs, each of which can be compared separately to a 
target protein, its computation can benefit greatly from 
systems with substantial coarse-grained parallelism. In our 
work, we show that this computation is therefore a natural 
fit to CMPs, specifically Intel’s IXP processor. While 
HMMer is not itself an embedded application, its 
mathematical structure is similar HMM-based embedded 
applications, such as speech processing and pattern 

matching, thus it is amenable to an embedded 
implementation. 

The primary artifact of this work is JackHMMer, a version 
of HMMer that runs on an Intel IXP 2850 network 
processor. The IXP implements the Viterbi algorithm for 
HMMs, which is the core component of HMMer’s search 
algorithm. JackHMMer achieves a 2x-5x performance gain 
relative to a hand-optimized HMMer version on a hyper-
threaded Pentium 4. 

New Tools and Design Approaches 
In addition to influencing the design and use of embedded 
systems, the trend toward CMP-based design also 
influences a designer’s tool-suite. In the three projects 
described here, three different development and simulation 
environments were employed. The heterogeneity study 
relies on the M5 multiprocessor system simulator from 
Michigan. The μ-cache simulation environment was built 
using Tensilica's Xtensa design tools. The Xtensa 
environment allows us to construct cycle-accurate system 
simulations with multiple processor cores, as well as 
sophisticated on- and off-chip memory components and 
interconnects, while obtaining die area and clock frequency 
estimates. Notably, the Xtensa environment was used to 
design Cisco's Metro NP. Finally, JackHMMer was 
developed with Intel’s IXP development and simulation 
environment, prior to deployment in a real system. 

Moreover, each study involved the creation of new, parallel 
workloads. We expect to see aggressive increases in the 
numbers of 1) thread-parallel workloads available, and 2) 
the design tools needed to support their development. A 
major challenge lies ahead as programmer tools and 
productivity confront thread-parallel development. 

Conclusions 
In summary, a synthesis of our recent work in CMP design 
and applications illustrates how the multi-core trend 
impacts high-performance embedded computing. The 
central observation is that the presence of multiple cores 
within a single embedded processor drives new directions 
and opportunities in system and processor design, design 
objectives, and target applications.  
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