

Impact of CMP Design on High-Performance Embedded Computing
Patrick Crowley, Mark A. Franklin, Jeremy Buhler, and Roger D. Chamberlain

Department of Computer Science and Engineering
 Washington University in St. Louis

pcrowley@wustl.edu, jbf@wustl.edu, jbuhler@wustl.edu, roger@wustl.edu

Introduction1

Chip multiprocessors (CMPs) will dominate commercial
processor designs for at least the next decade, during which
we will likely see an annual doubling of the number of
processor cores integrated onto a single chip. This trend is
expected in both desktop and server processors, as well as
within high-performance embedded systems where, in fact,
the phenomenon first appeared. Both Intel’s IXP network
processors (16 cores) and the MPOC project (8 cores) from
Hewlett-Packard were early embedded CMP designs for
use in routers and printers, respectively. The force behind
this trend is technology-based: it is possible to efficiently
scale a CMP design by increasing the number of cores
while maintaining or reducing overall power consumption
by reducing clock frequency. As long as the increase in
cores offsets the reduction in clock frequency, peak system
performance will improve; or, conversely, a given level of
performance can be maintained with less power.

Of course, achieving peak system performance depends on
how well a target application can be mapped onto system
resources. Notably, CMP architectures provide thread-level
parallelism, thus suggesting that performance-sensitive
applications will need to be thread-parallel. In the
embedded systems context, one can consider tailoring the
application, the processor, or both in order to meet system
constraints. While this enlarged design landscape provides
great flexibility, it also creates design challenges.

Thus, the use of CMPs in embedded systems has strong
implications for high-performance embedded computing. In
this abstract, we highlight some of these implications with
several examples drawn from our current research program
exploring the design and use of CMPs. In particular, we
illustrate the following topics.

1. CMP Organization. Specifically, how the use of
multiple processor core types within a CMP
impacts system efficiency and complexity.

2. Achieving Performance/Area Efficiency. We
focus on a novel CMP instruction delivery
hierarchy built with μ -caches.

3. Promising Thread-Parallel Applications. We
illustrate how an embedded CMP excels at
implementing a Hidden Markov Model-based
bioinformatics application.

This work supported by NSF grants CCF-0430012, CCF-0427794, and
DBI–0237902 and NIH/NGHRI grant 1 R42 HG003225–01.

CMP Organization: Evaluating Heterogeneity
While replicating cores is an efficient strategy, architects
are confronted with a basic question: what type of core
should be replicated? A given die area can accommodate:
many small, simple cores; fewer cores of a larger more
sophisticated variety; or some combination of the two.
Thus, in CMPs it is common to see either many simple
processors or a moderate quantity of high performance
cores. The first solution meets the needs of computing
environments characterized by higher thread parallelism,
while the second better accommodates scenarios with lower
thread parallelism and higher individual thread complexity.

Heterogeneous CMP systems, consisting of a combination
of processor cores of varying type on the same chip,
represent a compromise between the above alternatives.
The motivation comes from the observation that a multi-
programmed computing environment may present threads
of execution with different hardware resource requirements,
and that such needs may vary over time. In embedded
systems, such as Intel’s IXP, heterogeneous cores are the
dominant model. With a heterogeneous CMP, an
appropriate mapping of different program threads to
heterogeneous processor cores can maximize resource
utilization and, at the same time, achieve a high degree of
inter-thread parallelism.

In order to take advantage of a heterogeneous architecture,
an appropriate policy to map running tasks to processor
cores must be determined. The overall goal of such a
strategy must be to maximize the performance of the whole
system by accurately exploiting its resources. The control
mechanism must take into account the heterogeneity of the
system and of the workload, and the varying behavior of the
threads over time. Moreover, it must be easily
implementable and introduce as little overhead as possible.

In a recent study [1], we show that a heterogeneous system
adopting a dynamic assignment policy is able to
accommodate a variety of degrees of thread parallelism
more efficiently than both a homogeneous and a
heterogeneous system adopting a static assignment policy.
Our results, based on a collection of 11 sample programs,
show that heterogeneity can provide a 20%-80%
improvement in system performance compared to a
comparable homogeneous CMP, and that dynamic thread
migration can achieve a further 20%-40% gain.

Design Goals: Performance/Area Efficiency
CMP architectures place a relatively novel emphasis on the
area efficiency of the replicated processor cores; in
particular on the performance/area efficiency of the cache

hierarchy. In single-processor designs, cache hierarchies
have traditionally focused on computational performance,
with relatively little emphasis placed on area efficiency.

In recent work [2], we explore the use of very small
instruction caches, called μ-caches, which range in size
from 64 to 256 bytes. In a CMP system with L1 instruction
μ-caches, processors are arranged in clusters that share an
on-chip L2 instruction cache. This shared cache is
configured much like a traditional L1 instruction cache.
Provided that the use of μ-caches does not reduce
performance greatly, a substantial area savings can be
achieved due to the reduced number of L1 I-caches. If, for
example, the traditional I-cache accounts for a third of total
core area—the other components being the processor core
proper and the data cache (D-cache)—then, in the best case,
effectively removing the I-cache from each core will allow
a cluster of 4 cores with μ-caches to occupy roughly the
same area as a traditional 3-core cluster.

To evaluate the effectiveness of μ-caches, we performed a
simulation-based experimental study that compares the
performance/area efficiency of μ-caches to that of
traditional instruction cache hierarchies. Our study has two
crucial characteristics. First, rather than trying to
demonstrate that μ-caches are effective in the general case,
we restrict our study to applications that are commonly or
easily deployed on clustered CMP processors and consist of
pipelines of processing kernels, namely
networking/communications and bioinformatics. These
kernels are used to construct workloads that correspond to
the three natural approaches to mapping programs to
multiple cores. Second, we obtain performance and area
estimates by the use of a commercial design environment.

For these workloads, a cluster with μ-caches can maintain
the same performance with 25% of the area, or provide
25% greater performance in the same amount of area.

Thread-Parallel Application in Bioinformatics
Certain classes of compute-intensive, thread-parallel
applications are well-suited to CMP-based systems. To
explore how new levels of performance may be achieved,
we recently implemented and described [4] a CMP-based
version of a scientific workload drawn from bioinformatics:
the HMMer program [3] for protein motif finding. HMMer
compares protein sequences to a database of motifs –
sequences known to occur, with some variation, in a large
family of other proteins. These motifs are represented as
hidden Markov models (HMMs), which allows HMMer to
search for them in a protein using well-developed
mathematical machinery for parsing discrete sequences
with an HMM. Because HMMer works on a large database
of motifs, each of which can be compared separately to a
target protein, its computation can benefit greatly from
systems with substantial coarse-grained parallelism. In our
work, we show that this computation is therefore a natural
fit to CMPs, specifically Intel’s IXP processor. While
HMMer is not itself an embedded application, its
mathematical structure is similar HMM-based embedded
applications, such as speech processing and pattern

matching, thus it is amenable to an embedded
implementation.

The primary artifact of this work is JackHMMer, a version
of HMMer that runs on an Intel IXP 2850 network
processor. The IXP implements the Viterbi algorithm for
HMMs, which is the core component of HMMer’s search
algorithm. JackHMMer achieves a 2x-5x performance gain
relative to a hand-optimized HMMer version on a hyper-
threaded Pentium 4.

New Tools and Design Approaches
In addition to influencing the design and use of embedded
systems, the trend toward CMP-based design also
influences a designer’s tool-suite. In the three projects
described here, three different development and simulation
environments were employed. The heterogeneity study
relies on the M5 multiprocessor system simulator from
Michigan. The μ-cache simulation environment was built
using Tensilica's Xtensa design tools. The Xtensa
environment allows us to construct cycle-accurate system
simulations with multiple processor cores, as well as
sophisticated on- and off-chip memory components and
interconnects, while obtaining die area and clock frequency
estimates. Notably, the Xtensa environment was used to
design Cisco's Metro NP. Finally, JackHMMer was
developed with Intel’s IXP development and simulation
environment, prior to deployment in a real system.

Moreover, each study involved the creation of new, parallel
workloads. We expect to see aggressive increases in the
numbers of 1) thread-parallel workloads available, and 2)
the design tools needed to support their development. A
major challenge lies ahead as programmer tools and
productivity confront thread-parallel development.

Conclusions
In summary, a synthesis of our recent work in CMP design
and applications illustrates how the multi-core trend
impacts high-performance embedded computing. The
central observation is that the presence of multiple cores
within a single embedded processor drives new directions
and opportunities in system and processor design, design
objectives, and target applications.

References
[1] M. Becchi and P. Crowley. “Dynamic Thread Assignment on

Heterogeneous Multiprocessor Architectures.” In
Proceedings of the 3rd ACM Int’l Conference on Computing
Frontiers, Ischia, Italy. May, 2006.

[2] M. Becchi, M. A. Franklin, and P. Crowley.
“Performance/area efficiency in CMP processors with micro-
caches.” Under review. May, 2006.

[3] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids, Cambridge University Press, 1998.

[4] B. Wun, J. Buhler, and P. Crowley. “Exploiting Coarse-
Grained Parallelism to Accelerate Protein Motif Finding with
a Network Processor.” In Proceedings of the 2005
International Conference on Parallel Architectures and
Compilation Techniques (PACT). Saint Louis, MO.
September, 2005.

