Leveraging Carbon Nanotubes to Develop a Fourth-Generation Radiation Hardened Microprocessor for Space

Richard Ridgley <u>rridgley@adelphia.net</u>

The High Performance Embedded Computing Workshop September 2006

Outline

- Current Space Processors and Issues
- Key Carbon Nanotube Features
- Carbon Nanotubes for Memory and Logic
- Performance Expectations
- Microprocessor Roadmap
- Other Leveraging Opportunities
- Conclusions

Current Processors and Issues

- Space mission complexity is increasing
- Current radiation hardened processor:
 - 400 MIPS Future Generation-High Performance Spaceborne Computer (FG-HPSC) developed at BAE Systems
- Need exists for advanced performance microprocessor that must survive severe radiation threats
 - Electrical performance desired: 1BIPS at 5 Watts
 - Radiation performance desired:

Parameter	Level
Total Dose	>1 Mrad(Si)
Single Event Upset	<10 ⁻¹¹ errors/bit-day
Single Event Latchup	>120 MeV-cm²/mg
Neutron	>10 ¹³ n/cm ²
Dose Rate Upset	5x10 ⁹ rad(Si)/sec
Dose Rate Survive	10 ¹² rad(Si)/sec

Key Carbon Nanotube Features

- Basic properties
 - CNT: ~ 1 nm diameter metal / semiconductor
 - Current density: 10⁹ A/cm²
 - Thermal conductivity: ~diamond
 - Mechanical strength: 100x stronger than steel
- Carbon nanotube growth is tailored
 - Nanotube fabric sheet density and resistance depend on fabrication methodology
- Inherently radiation hard
- Electrical properties and material strength enable use as nano-electromechanical switch
- Material and lithographic compatibility with CMOS process
 - Room temperature deposition by spin coating
 - Robust metallization (sputter/CVD)

Lithographic Patterning of Carbon Nanotube Fabrics

Carbon Nanotubes for Memory and Logic

- Operation
 - Switching occurs by applying an electric field between the write/read electrode and the CNT fabric
 - Field deforms the CNT fabric until contact is made with the write/read electrode.
 - Contact defines an 'on' device and the junction resistance can be read
 - CNT fabric remains in place by van der Waals forces
- Key Results
 - Switched bits are nonvolatile--volatile designs also exist
 - No standby current; no leakage current
 - One switch replaces 6-12 transistors for memory

Illustration of 3-Term Electromechanical switch Operation Using Molecular van der Waal's Forces

16-bit Nonvolatile Memory CMOS Array (4×4)

Nonvolatile Memory Operation – Device Scaled to 20 nm

Performance Expectations

- For a given lithography node, CNT devices can enable:
 - 80% reduction in cell area and more if multi-layers are used
 - 10x increase in gate speed, and
 - 5x decrease in overall power at speed

Radiation Hardened Microprocessor Roadmap

Other Leveraging Opportunities

Potential CNT integration and redesign projects include:

- Non-volatile 3M-gate FPGAs
- Large non-volatile memory chips, 256Mb/1Gb/8Gb
 - For very large solid state recorders (SSR) and memory buffers
- Dual core Power PC 750 250 MHz with dual on-chip 1-MB L2 cache
 - Also replace
 - Buffers,
 - Registers,
 - L1 cache (32KB data and instruction) and
 - Read/write logic (memory management units)
 - Achieve 1 billion instructions per second at 5 watts of power
- Vector processor (e.g. CSX600) by replacing SRAM memory and read/write logic to allow 128 each, 32 bit floating point processing units. This will allow

 100 billion floating point calculations per second in space
- Replace ASIC memories and read/write logic for enhanced performance, reduced power and part cost

Conclusions

- CNT technology offers a unique opportunity to rapidly advance radiation hardened memory and logic capabilities
- Enables low power advanced electronics for use in space
- CMOS compatibility enables advanced performance at established radiation hardened foundries without additional capital investment
- Offers a path forward to quickly address the rapidly advancing space processing needs

Backup Slides

3-Term Nonvolatile Memory Technology

• Self-passivated nanocavity for nonvolatile memory devices allows standard packaging

Snap Shot of Layout

R&D Nonvolatile Memory Devices

Nonvolatile Memory Characteristics

Property	Performance
Intrinsic Bit Speed	2 -3 GHz
Permanent Non-volatility	Yes
Read Access Time	<5 ns
Write/Erase Access Time	<5 ns
Standby Current (ma)	0
Power Consumption	~0.2 mW
Max # Read/Write Cycles	infinite
Retention	>10 years
Ease of CMOS Integration	high
Operating Temperature	-273C to +250C
Resistant to Magnetism	Yes
Resistant to Vibration	Yes
Multi-bit storage	Yes
Maximum Potential Speed	200 GHz
Maximum Theoretical Destiny/Area (b/cm ²)	1000G
Process Complexity	Low