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Current Processors and Issues

• Space mission complexity is increasing
• Current radiation hardened processor:

– 400 MIPS Future Generation-High Performance Spaceborne
Computer (FG-HPSC) developed at BAE Systems

• Need exists for advanced performance 
microprocessor that must survive severe radiation 
threats
– Electrical performance desired:  1BIPS at 5 Watts
– Radiation performance desired:

Parameter Level 
Total Dose >1 Mrad(Si) 
Single Event Upset <10-11 errors/bit-day 
Single Event Latchup >120 MeV-cm2/mg 
Neutron >1013 n/cm2 
Dose Rate Upset 5x109 rad(Si)/sec 
Dose Rate Survive 1012 rad(Si)/sec 
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Key Carbon Nanotube Features

• Basic properties
– CNT: ~ 1 nm diameter metal / semiconductor
– Current density: 109 A/cm2

– Thermal conductivity: ~diamond
– Mechanical strength: 100x stronger than steel

• Carbon nanotube growth is tailored
– Nanotube fabric sheet density and resistance 

depend on fabrication methodology

• Inherently radiation hard
• Electrical properties and material strength 

enable use as nano-electromechanical switch
• Material and lithographic compatibility with 

CMOS process 
– Room temperature deposition by spin coating 
– Robust metallization (sputter/CVD)
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Lithographic Patterning of Carbon Nanotube Fabrics
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Carbon Nanotubes for Memory and Logic

• Operation
– Switching occurs by applying an electric field between the 

write/read electrode and the CNT fabric
– Field deforms the CNT fabric until contact is made with the 

write/read electrode.
– Contact defines an ‘on’ device and the junction resistance can be 

read
– CNT fabric remains in place by van der Waals forces

• Key Results
– Switched bits are nonvolatile--volatile designs also exist 
– No standby current; no leakage current
– One switch replaces 6-12 transistors for memory
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Illustration of 3-Term Electromechanical switch 
Operation Using Molecular van der Waal’s Forces
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Nanotube memories 
are nonvolatile 

devices
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16-bit Nonvolatile Memory CMOS Array (4×4) 

4×4 Array

Mask Layout Die Photo
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Nonvolatile Memory Operation – Device Scaled to 20 nm

• Nanotube fabric length: 22 nm Metal

Nanotubes
ON OFF

Top down view
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Performance Expectations

• For a given lithography node, CNT devices can 
enable:
– 80% reduction in cell area and more if multi-layers are used
– 10x increase in gate speed, and
– 5x decrease in overall power at speed

Electromechanical Logic Overview, U.S. Government Program Status Briefing, Aug. 2005. 
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Radiation Hardened Microprocessor 
Roadmap
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Other Leveraging Opportunities

Potential CNT integration and redesign projects include: 
• Non-volatile 3M-gate FPGAs
• Large non-volatile memory chips, 256Mb/1Gb/8Gb

– For very large solid state recorders (SSR) and memory buffers
• Dual core Power PC 750 250 MHz with dual on-chip 1-MB 

L2 cache 
– Also replace 

• Buffers, 
• Registers, 
• L1 cache (32KB data and instruction) and 
• Read/write logic (memory management units)

– Achieve 1 billion instructions per second at 5 watts of power
• Vector processor (e.g. CSX600) by replacing SRAM 

memory and read/write logic to allow 128 each, 32 bit 
floating point processing units.  This will allow 
– 100 billion floating point calculations per second in space

• Replace ASIC memories and read/write logic for 
enhanced performance, reduced power and part cost
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Conclusions

• CNT technology offers a unique opportunity to rapidly 
advance radiation hardened memory and logic 
capabilities 

• Enables low power advanced electronics for use in 
space  

• CMOS compatibility enables advanced performance at 
established radiation hardened foundries without 
additional capital investment 

• Offers a path forward to quickly address the rapidly 
advancing space processing needs
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3-Term Nonvolatile Memory Technology
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• Development 
done on a 
production 
CMOS fab line 
(180 nm node)

• Self-passivated nanocavity for nonvolatile 
memory devices allows standard packaging

50 nm
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Snap Shot of Layout
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R&D Nonvolatile Memory DevicesR&D Nonvolatile Memory Devices
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Nonvolatile Memory Characteristics

LowProcess Complexity
1000GMaximum Theoretical Destiny/Area (b/cm2)

200 GHzMaximum Potential Speed
YesMulti-bit storage
YesResistant to Vibration
YesResistant to Magnetism

-273C to +250C Operating Temperature
highEase of CMOS Integration

>10 yearsRetention
infiniteMax # Read/Write Cycles

~0.2 mWPower Consumption
0Standby Current (ma)

<5 nsWrite/Erase Access Time
<5 nsRead Access Time
YesPermanent Non-volatility

2 -3 GHzIntrinsic Bit Speed

PerformanceProperty


