
Program Analysis Tools for Application Specific
Architectures

Maya B. Gokhale, Matthew J. Sottile
Los Alamos National Labs
Los Alamos, NM 87545

Email: {maya,matt}@lanl.gov

I. I NTRODUCTION

Application specific acceleration using Field Programmable
Gate Arrays (FPGAs) and Floating Point Arrays (FPAs) offers
the opportunity to significantly augment the computing power
of microproprocessors. In these architectures, acceleration
boards contain FPGAs or FPAs along with dedicated memory
banks of SRAM or DRAM. The board communicates with a
host microprocessor through a high speed I/O bus or hyper-
transport.

Application-specific accelerators have been shown to deliver
speedups of 10 100× on some kernel functions such as ma-
trix multply or FFT. However, finding suitable computational
kernels in large legacy applications can be challenging. Such
kernels must have sufficient computational density to offset
the cost of communicating input data and results between
acceleration engine and host, yet must still be of an appropriate
size to fit on the FPGA/FPA resources available. The data must
fit on the accelerator board, especially if it is reused during
the computation, or else it must be partitioned and sent to
the board in chunks. The kernels must be coded in a different
language (or language dialect) from the rest of the application.
Code must be inserted into the overall application to load the
kernels, synchronize processing, and communicate data and
results.

In this work, we discuss tools we have recently developed to
help understand partitioning choices between microprocessor
and acceleration engine in large, legacy applications. Our
tools OpMix and MemFoot extend the widely used program
performance analysis tools Tau [1] and Valgrind [2].

II. OPERATION M IX OF COMPUTE KERNELS

Identifying regions of a kernel for acceleration requires
understanding of the instruction stream. Due to limitations
of modern accelerator hardware, it is not possible to choose
an arbitrary stream of instructions to be implemented on
an accelerator while still achieving some speedup over a
traditional microprocessor. For example, the ability to execute
general double precision floating point arithmetic is limited on
many implementations. Similarly, we may find that a region
of code where a large amount of time is spent performs a very
irregular instruction stream, possibly with a high branch count,
making accelerator implementation difficult. The OpMix tool
will help automate the process of identifying regions of code

where both a large amount of time is spent and the instruction
mix is appropriate for acceleration.

The tool is based on a simple process of identifying candi-
date regions of code based on profile data, extraction of those
regions of code, and analysis of the instruction stream that they
require. Profiling is performed using the TAU performance
analysis toolkit [1]. Profiles can be taken based on time or
hardware counters. We can use the hardware counter data,
in addition to simple time measurements, to characterize the
behavior of regions of code with respect to their memory
locality (through cache miss statistics) and instruction stream
regularity (branching behavior). Code in C, C++, or Fortran
may be automatically instrumented for profiling at both the
function and loop level. Custom definition of regions for
profiling can also be added manually to organize profiled
regions in a manner that better reflects semantic relationships
within the source code.

We are able to use profile data to identify the source regions
where most of the time (or other measured quantity) was
spent. Given these regions, we would like to then decide how
appropriate they are for acceleration. To perform this analysis,
we use the GNU libbfd [3] library and code based on the GNU
binutils package to map source code locations to instructions
in the compiled binary. This allows us to determine the
instruction mix for the profiled regions of interest in a static
sense. This information, combined with dynamically measured
data within profiles of both time and executed instruction
counts (such as branch or floating point operations), allows
us to form a description of the program both in terms of what
regions of code consume the most time, and which of these
regions execute instruction streams most appropriate for an
accelerator.

This instruction mix information can be combined with the
analysis of the memory footprint to yield a breakdown of the
code into regions that are conducive to acceleration from both
a memory and computational requirement perspective.

III. M EMORY FOOTPRINTANALYSIS

Once a computational kernel has been identified and its
operations have been evaluated, it is necessary to understand
the data requirements of the kernel. Data used by the kernel
must be transferred to the acceleration unit as the kernel
executes, and results returned back to the microprocessor main
memory. The data may be supplied in full, in discrete buffers,



or may be streamed to the kernel. In order to decide which of
these options would be most appropriate for a specific kernel,
a first step is to understand the amount of data being processed
within the kernel. The kernel’s memory footprint can be used
to guide selection of the communication options. For example,
if the amount of data processed by the kernel is larger than
the amount of on-board memory, then buffering or streaming
is necessary.

A kernel’s memory footprint is often difficult (or impossi-
ble) to ascertain from static analysis of the source code, either
manually or algorithmically. Often, arrays are dynamically
allocated, and their extents depend on parameters supplied at
run time in data files, and/or complex control logic throughout
the application. Running different data sets may result in very
different memory footprints. For this reason, we have built
a tool that reports the number of load/store operations on a
subroutine basis.

The MemFoot tool is built on the Valgrind framework.
Valgrind has a number of tools that help detect memory
management and threading bugs. There is a memory error
detector, a cache profiler, a heap profiler. While Valgrind
can report on load and store operations, it reports on total
number of loads or stores across the entire program, broken
down into a per-function basis. For our application of kernel
code profiling, it is desirable to profile loads and stores for
specific small regions of code. It is also significantly faster to
insert instrumentation only on the small kernel being studied.
Further, valgrind gives only the total number of load and
store operations. We would like to know the number of
uniqueaddresses accessed, and the number of times each was
accessed. This information helps to determine how much data
must be transferred to and from the accelerator board. It can
also help identify specific variables that should be kept on-chip
in registers.

As an example of its usage, the MemFoot tool was applied
to a Monte Carlo Radiative Heat Transfer Simulation [4]. A
subroutine “taskcode” contains the main computation. While
there were 143.5M load or store operations in taskcode, there
were only 3887 unique 32-bit words. Further, a small subset
of those words were accessed thousands of times. Knowing
these characteristics, we can determine that for a Xilinx FPGA
implementation, the data can be store in Block RAM. On the
Clearspeed, the data can be spread across the per-PE 6KB
local memory.

IV. SUMMARY

Application specific heterogenous architectures are expected
to become increasingly important in boosting the performance
of general purpose microprocessors. To effectively exploit such
architectures on legacy applications, tools are needed that
help identify dense computation kernels and to understand the
instruction mix and memory requirements of the kernels. In the
workshop we will describe a tool set being developed to help
reveal these computational characteristics of compute intensive
codes and its performance on a set of scientific applications.

REFERENCES

[1] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications,
submitted.

[2] N. Nethercote and J. Seward, “Valgrind: A program supervision frame-
work,” Electronic Notes in Theoretical Computer Science, 2003.

[3] “libbfd: the binary file descriptor library,”Documentation for the GNU
binary utilities, April 1992.

[4] P. J. Burns and D. V. Pryor, “Vector and parallel monte carlo radiative
heat transfer,”Numerical Heat Transfer, Part B: Fundamentals, 1989.


