

Automatic Mapping of the HPEC Challenge Benchmarks

Nadya T. Bliss Jason Dahlstrom Daniel Jennings Sanjeev Mohindra

September 19th, 2006

MIT Lincoln Laboratory

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

HPEC 2006 - 1 NT 11/29/2006

Outline

• Introduction

- Automatic Mapping
- HPEC Challenge
- Results
- Summary

Next Generation Processing Trends

Digital arrays require significantly more processing than arrays of the past

Applications require both signal and knowledge processing

To address the processing challenges parallel systems are being architected with multiple processing elements on a single chip.

Benchmark Motivation

HPEC Challenge benchmarks allow for quantitative evaluation of processor systems and architectures.

Challenge: Mapping the Benchmarks

HPEC 2006 - 5 NT 11/29/2006

Outline

- Introduction
- Automatic Mapping
- HPEC Challenge
- Results
- Summary

Automatic Mapping: Why?

The size of the search space of possible maps for a computation is difficult (often impossible) to handle for a human

Automatic Mapping: pMapper

Partial Maps

Mapping Algorithm

Simulated Mapping

Simulate the Cell BE processor using pMapper simulator infrastructure
Use pMapper to predict mapping and performance on the Cell BE

Machine Model

Machine model provides description of underlying hardware.

IBM Cell characteristics*

- 8 SPEs (n_cpus)
- Peak FLOPS @ 3.2 Ghz: 204.8 GFLOPS (cpu_rate)
- Processor to Memory bandwidth: 25.6 GB/sec (mem_rate)
- Network bandwidth: 76.8 GB/sec (net_rate)
- ...

MIT Lincoln Laboratory

HPEC 2006 - 12 NT 11/29/2006 * Exploring the Cell with HPEC Challenge Benchmarks, S. Sacco, G. Schrader, J. Kepner, M. Marzilli, HPEC 2006.

Outline

- Introduction
- Automatic Mapping
- HPEC Challenge
- Results
- Summary

HPEC Challenge Overview*

- DARPA PCA program kernel benchmarks
 - Single-processor operations
 - Drawn from many different DoD applications
 - Represent both "front-end" signal processing and "back-end" knowledge processing
- DARPA HPCS program Synthetic SAR benchmark
 - Multi-processor compact application
 - Representative of a real application workload
 - Designed to be easily scalable and verifiable

Introducing the HPEC Challenge Benchmark Suite

The embedded computing community is faced with an ever increasing challenge of producing software, firmware, and hardware to meet the demands of high performance commercial and DoD applications. These application requirements are driving the use of new computer processing elements with new processor architectures and increasing the complexity of application software.

MIT Lincoln Laboratory

HPEC 2006 - 14 NT 11/29/2006 * The HPEC Challenge Benchmark Suite, R. Haney, T. Meuse, J. Kepner, HPEC 2006.

Signal Processing and Communication

*The corner turn benchmark was not mapped by pMapper, since the mapping is predefined.

Knowledge Processing

Back-end Processing

- Data dependent
- Thread oriented
- Information processing
- Knowledge processing

Application: Synthetic Aperture Radar

*HPEC Challenge SAR Benchmark pMatlab Implementation and Performance, J. Mullen, T. Meuse, J. Kepner, HPEC 2006.

Outline

- Introduction
- Automatic Mapping
- HPEC Challenge
- Results
- Summary

Embarrassingly Parallel: FIR

Bank of input vectors

Length of the input vector is equal to *N* and the number of input vectors is equal to *M*, •The dataset can be represented as a *1xNxM* array •The filter is small enough to be replicated

pMapper chooses the embarrassingly parallel mapping on 8 SPEs and produces *linear speedup*.

Embarrassingly Parallel

Pattern Match Mapping chosen: Time Speedup x10-4 8 8 Time (sec) Time (sec) Break the bank of 8 8 patterns between Processors (SPE) Processors (SPE) processors

Genetic Algorithm

MIT Lincoln Laboratory

HPEC 2006 - 21 NT 11/29/2006

MIT Lincoln Laboratory

HPEC 2006 - 22 NT 11/29/2006

SVD

Parallel SVD via Block-Householder Bidiagonalization

The parallel SVD algorithm consists of both parallel and serial operations. The simulated results are provided for the bidiagonalization.

MIT Lincoln Laboratory

HPEC 2006 - 23 NT 11/29/2006

Database

Mapping chosen:

Cyclic mapping is chosen for the search operation - better load balancing than block distribution. **Benchmark consists of database operations**

- Insert atomic, non parallelizable
- Delete atomic, non parallelizable
- Search parallelizable

MIT Lincoln Laboratory

Application

HPEC 2006 - 25 NT 11/29/2006

Outline

- Introduction
- Automatic Mapping
- HPEC Challenge
- Results
- Summary

Summary

Benchmark	Мар	Speedup (max=8*)
FIR		8
CFAR		8
SVD		6.7
QR		2.6
Pattern Match		8
Genetic Algorithm		2.8
Database Operations		3.8
Application (SAR)		17/23**

pMapper finds efficient mappings for all of the benchmarks and is sensitive to algorithm parameters.

HPEC 2006 - 27 NT 11/29/2006 *With the exception of the SAR benchmark.

MIT Lincoln Laboratory

**Results generated on LLGrid using 64 processors.

- Robert Bond
- Ryan Haney
- Jeremy Kepner
- Hahn Kim
- Daniel Kunkle
- Julia Mullen
- Edward Rutledge
- Sharon Sacco
- Glenn Schrader
- Ken Senne