
HPEC 2006 - 1
NT 11/29/2006

MIT Lincoln Laboratory

Automatic Mapping
of the HPEC Challenge Benchmarks

Nadya T. Bliss
Jason Dahlstrom
Daniel Jennings

Sanjeev Mohindra

September 19th, 2006

This work is sponsored by the Department of the Air Force under Air Force contract
FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory
HPEC 2006 - 2
NT 11/29/2006

Outline

• Introduction
• Automatic Mapping
• HPEC Challenge
• Results
• Summary

MIT Lincoln Laboratory
HPEC 2006 - 3
NT 11/29/2006

Next Generation Processing Trends

Analog array Wideband digital array

Array Technology Trends

Multi-processor system Tile processor

Processor Technology Trends

Algorithmic Trends

Signal Processing

Knowledge Processing

Digital arrays require significantly more
processing than arrays of the past

Applications require both signal
and knowledge processing

To address the processing challenges parallel systems are being
architected with multiple processing elements on a single chip.
To address the processing challenges parallel systems are being
architected with multiple processing elements on a single chip.

Pulse
Compress

Doppler
Process STAP

Bayesian
Networks

.
..

. ..
. ..SVM

MIT Lincoln Laboratory
HPEC 2006 - 4
NT 11/29/2006

Benchmark Motivation

Quantitative measures of performance are necessary to
gauge the fitness of systems for emerging applications

Processor systems and architectures

Single processor
element

Cluster
Multi-computer

Tiled processor

HPEC Challenge benchmarks allow for quantitative
evaluation of processor systems and architectures.
HPEC Challenge benchmarks allow for quantitative
evaluation of processor systems and architectures.

Benchmarks

Beams

Dopplers

Range

C(i,j,k)

T(i,j,k)

C

Normalize
Threshold

Target List
(i,j,k)

MIT Lincoln Laboratory
HPEC 2006 - 5
NT 11/29/2006

Challenge: Mapping the Benchmarks

map2
map3

map1 Mapping each
benchmark is a
major challenge

Use automatic mapping
technology (pMapper) to both
generate maps and predict
architecture performance

Use automatic mapping
technology (pMapper) to both
generate maps and predict
architecture performance

pMapperProcessor

Cell BE
• 1 PPE
• 8 SPEs

Benchmarks

Beams

Dopplers

Range

C(i,j,k)

T(i,j,k)

C

Normalize
Threshold

Target List
(i,j,k)

MIT Lincoln Laboratory
HPEC 2006 - 6
NT 11/29/2006

Outline

• Introduction
• Automatic Mapping
• HPEC Challenge
• Results
• Summary

MIT Lincoln Laboratory
HPEC 2006 - 7
NT 11/29/2006

Automatic Mapping: Why?

The size of the search space of possible maps for a computation
is difficult (often impossible) to handle for a human
The size of the search space of possible maps for a computation
is difficult (often impossible) to handle for a human

A = rand(N,M,mapA);
B = zeros(N,M,mapB);
C = zeros(N,M,mapC);
D = rand(N,M,mapD);
E = zeros(N,M,mapE);
B(:,:) = fft(A,[],1);
C(:,:) = fft(B,[],2);
E(:,:) = C*D;

Number of possible maps for the sample program

Example:
3125 possible
maps onto 16
processors

MIT Lincoln Laboratory
HPEC 2006 - 8
NT 11/29/2006

Automatic Mapping: pMapper
pMapper

pMapper is a middleware automatic
mapping architecture that performs
dynamic code analysis and global
optimization.

pMapper is a middleware automatic
mapping architecture that performs
dynamic code analysis and global
optimization.

A = rand(M,N,p);
B = zeros(M,N,p);
C = zeros(M,N,p);
D = rand(M,N,p);
E = zeros(M,N,p);

B = fft(A,[],1);
C = fft(B,[],2);
E = D*C;

mapA = map([1 4],{},[0:3]);
mapB = map([4 1],{},[0:3]);
mapC = map([2 2],{},[0:3]);
mapD = map([2 2],{},[0 2 1 3]);

A = rand(M,N,mapA);
B = zeros(M,N,mapB);
C = zeros(M,N,mapC);
D = rand(M,N,mapD);
E = zeros(M,N,mapD);

B(:,:) = fft(A,[],1);
C(:,:) = fft(B,[],2);
E(:,:) = D*C;

Originally designed to
map MATLAB
programs to clusters.

pMatlab pMapper

maps are replaced
with parallel tags

MIT Lincoln Laboratory
HPEC 2006 - 9
NT 11/29/2006

Partial Maps

A = rand(M,N,p);
B = zeros(M,N,p);
C = zeros(M,N,p);
D = rand(M,N,p);
E = zeros(M,N,p);

B = fft(A,[],1);
C = fft(B,[],2);
E = D*C;

localE = local(E);
localE = foo(localE);
E = put_local(E, localE);

Initial pMapper design replaced maps with tags and
used the performance model without restriction.
Initial pMapper design replaced maps with tags and
used the performance model without restriction.

+

No mapping
information has to be
specified

-

Fragmented global array
programming model
inhibits optimization

Solution: allow for partial map specification
and let pMapper fill in the missing information.
Solution: allow for partial map specification
and let pMapper fill in the missing information. A = rand(M,N,p);

B = zeros(M,N,p);
C = zeros(M,N,p);
D = rand(M,N,p);
pmap = map([1 *]);
E = zeros(M,N,pmap);

B = fft(A,[],1);
C = fft(B,[],2);
E = D*C;

localE = local(E);
localE = foo(localE);
E = put_local(E, localE);

A partial map has one or more of
the map attributes unspecified

Grid: 1x*
Dist:
Procs:

Grid: 1x8
Dist: block
Procs: [0:7]

Full Map Partial Map

map attributes

MIT Lincoln Laboratory
HPEC 2006 - 10
NT 11/29/2006

Mapping Algorithm

•Use lazy evaluation to collect as much information as possible
•Store the program information as a signal flow graph
•Generate an atlas for the signal flow graph

•Use lazy evaluation to collect as much information as possible
•Store the program information as a signal flow graph
•Generate an atlas for the signal flow graph

1
1
2

SFG
 N

o des...

2 3 4

Number of processors

...

Entry (i,j) contains the
best atlas for the first i
SFG nodes mapped on
j processors.

Table is built with an
algorithm based on
dynamic programming.
Each new entry is
generated based on
previously generated
entries.

Table is built with an
algorithm based on
dynamic programming.
Each new entry is
generated based on
previously generated
entries.

MIT Lincoln Laboratory
HPEC 2006 - 11
NT 11/29/2006

Simulated Mapping

PROGRAM
SPEC

SIGNAL
FLOW

EXTRACTOR

PERFORM.
MODEL ATLAS

SIGNAL
FLOW

GRAPH

EXPERT
MAPPING
SYSTEM

PROGRAM
TIMING

PERFORM.
MODEL

SIMULATOR

• Simulate the Cell BE processor using pMapper simulator infrastructure
• Use pMapper to predict mapping and performance on the Cell BE
• Simulate the Cell BE processor using pMapper simulator infrastructure
• Use pMapper to predict mapping and performance on the Cell BE

pMapper can be used to generate maps using a
program specification and a simulated system.
pMapper can be used to generate maps using a
program specification and a simulated system.

MIT Lincoln Laboratory
HPEC 2006 - 12
NT 11/29/2006

Machine Model

n_cpus =
cpu_rate =
mem_rate =
net_rate =
cpu_latency =
mem_latency =
net_latency =
…

Machine model provides description of underlying hardware.Machine model provides description of underlying hardware.

IBM Cell characteristics*
• 8 SPEs (n_cpus)
• Peak FLOPS @ 3.2 Ghz: 204.8 GFLOPS (cpu_rate)
• Processor to Memory bandwidth: 25.6 GB/sec (mem_rate)
• Network bandwidth: 76.8 GB/sec (net_rate)
• ...

IBM Cell characteristics*
• 8 SPEs (n_cpus)
• Peak FLOPS @ 3.2 Ghz: 204.8 GFLOPS (cpu_rate)
• Processor to Memory bandwidth: 25.6 GB/sec (mem_rate)
• Network bandwidth: 76.8 GB/sec (net_rate)
• ...

*Exploring the Cell with HPEC Challenge Benchmarks, S. Sacco, G. Schrader, J. Kepner, M. Marzilli, HPEC 2006.

MIT Lincoln Laboratory
HPEC 2006 - 13
NT 11/29/2006

Outline

• Introduction
• Automatic Mapping
• HPEC Challenge
• Results
• Summary

MIT Lincoln Laboratory
HPEC 2006 - 14
NT 11/29/2006

HPEC Challenge Overview*
• DARPA PCA program kernel benchmarks

– Single-processor operations
– Drawn from many different DoD applications
– Represent both “front-end” signal processing and “back-end”

knowledge processing
• DARPA HPCS program Synthetic SAR benchmark

– Multi-processor compact application
– Representative of a real application workload
– Designed to be easily scalable and verifiable

• DARPA PCA program kernel benchmarks
– Single-processor operations
– Drawn from many different DoD applications
– Represent both “front-end” signal processing and “back-end”

knowledge processing
• DARPA HPCS program Synthetic SAR benchmark

– Multi-processor compact application
– Representative of a real application workload
– Designed to be easily scalable and verifiable

*The HPEC Challenge Benchmark Suite, R. Haney, T. Meuse, J. Kepner, HPEC 2006.

MIT Lincoln Laboratory
HPEC 2006 - 15
NT 11/29/2006

Signal Processing and Communication

FIR

QR

CFAR

Front-end Processing
• Data independent, stream-oriented
• Signal processing, image processing
• High-speed network communication

Front-end Processing
• Data independent, stream-oriented
• Signal processing, image processing
• High-speed network communication

Corner Turn*

*The corner turn benchmark was not mapped by pMapper, since the mapping is predefined.

Beams

Dopplers

Range

C(i,j,k)

T(i,j,k)

C

Normalize
Threshold

Target List
(i,j,k)

Input Matrix

M
 C

ha
nn

el
s

SVD

MIT Lincoln Laboratory
HPEC 2006 - 16
NT 11/29/2006

Knowledge Processing

Red-Black Tree
Data Structure

Linked List
Data Structures

Database
Operations

Pattern
Match

Genetic
Algorithm

Back-end Processing
• Data dependent
• Thread oriented
• Information processing
• Knowledge processing

Back-end Processing
• Data dependent
• Thread oriented
• Information processing
• Knowledge processing

MIT Lincoln Laboratory
HPEC 2006 - 17
NT 11/29/2006

Application: Synthetic Aperture Radar

SAR
Images

Template
Files

Back-End Knowledge
Formation

Validation

Template
Files

Groups of
Template
Files

Raw
SAR

Files

SAR
Image

Scalable Data
and Template

Generator

Kernel #2
Image

Storage

Groups of
Template

Files

Sub-Image
Detection
Files

Image
Files

Sub-Image
Detection
Files

DetectionsKernel #4
Detection

SAR
Image

Template
Insertion

Kernel #3
Image

Retrieval Templates

Raw
SAR
File

SAR
Image
Files

SAR
Image
Files

Kernel #1
Data Read
and Image
Formation

Templates

Template
Files

Raw SAR
Data Files

Front-End Sensor Processing
Intent of application benchmark
• Scalable
• High compute fidelity
• Low physical fidelity
• Self-verifying

Intent of application benchmark
• Scalable
• High compute fidelity
• Low physical fidelity
• Self-verifying

Focus on
computation

*HPEC Challenge SAR Benchmark pMatlab Implementation and Performance, J. Mullen, T. Meuse, J. Kepner, HPEC 2006.

MIT Lincoln Laboratory
HPEC 2006 - 18
NT 11/29/2006

Outline

• Introduction
• Automatic Mapping
• HPEC Challenge
• Results
• Summary

MIT Lincoln Laboratory
HPEC 2006 - 19
NT 11/29/2006

Embarrassingly Parallel: FIR
Bank of input vectors

K Filter coefficients

Length of the input vector is equal to N and the
number of input vectors is equal to M,
•The dataset can be represented as a 1xNxM array
•The filter is small enough to be replicated

Length of the input vector is equal to N and the
number of input vectors is equal to M,
•The dataset can be represented as a 1xNxM array
•The filter is small enough to be replicated

122010242
1286440961

KMNDatasetTime and Speedup for Dataset 2

pMapper chooses the embarrassingly parallel
mapping on 8 SPEs and produces linear speedup.
pMapper chooses the embarrassingly parallel
mapping on 8 SPEs and produces linear speedup.

Processors used:

Mapping:

Ti
m

e
(s

ec
)

Processors (SPE)Processors (SPE)

0.35 8

8

Sp
ee

du
p

8

MIT Lincoln Laboratory
HPEC 2006 - 20
NT 11/29/2006

Embarrassingly Parallel

Pattern Match

Break the bank of
patterns between
processors

Break the bank of
patterns between
processors

Beams

Dopplers

Range

C(i,j,k)

T(i,j,k)

C

Normalize,
Threshold

Target List

(i,j,k)

CFAR

Break up the data
cube along the third
(beams) dimension

Break up the data
cube along the third
(beams) dimension

Mapping chosen: Time Speedup

Mapping chosen:

Time Speedup

Processors (SPE) Processors (SPE)

8

8

Sp
ee

du
p

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

Processors (SPE) Processors (SPE)

8

8

8

8

1.4

8
x10-4

x10-3

MIT Lincoln Laboratory
HPEC 2006 - 21
NT 11/29/2006

Genetic Algorithm

104004
51003
962002
8501

M
chromosome

N
population

Dataset

The algorithm implementation consists of
• Embarrassingly parallel crossover and mutation steps
• Communication step for each generation

The algorithm implementation consists of
• Embarrassingly parallel crossover and mutation steps
• Communication step for each generation

1.

2.

3.

4.

Observations:
• For smaller populations, communication step dominates

• pMapper chooses to use a single processor (SPE)
• For larger populations, distribution is beneficial

• pMapper correctly balances communication to
computation ratio when determining the mapping

PopulationProcessors

Speedup achieved up to 3
processors. Afterwards,
communication dominates.

Ti
m

e
(s

ec
)

15 8

Sp
ee

du
p

8
Processors (SPE) Processors (SPE)

8

MIT Lincoln Laboratory
HPEC 2006 - 22
NT 11/29/2006

QR

Parallel Implementation

pMapper traverses the landscape
of solutions and finds solutions
that are in the valleys.

pMapper traverses the landscape
of solutions and finds solutions
that are in the valleys.

Time Speedup Time vs.
Processors vs.
Matrix Dimensions

Mapping chosen:

At more than 6 processors, the
communication starts to dominate.
At more than 6 processors, the
communication starts to dominate.

Global processing of Givens Rotation

Processors (SPE) Processors (SPE)
8

Sp
ee

du
p

Ti
m

e
(s

ec
)

8

18 8

Ti
m

e
(s

ec
)

Processors
Matrix Dimension

MIT Lincoln Laboratory
HPEC 2006 - 23
NT 11/29/2006

SVD
Parallel SVD via Block-Householder Bidiagonalization

The algorithm requires a
blocking variable h, which
influences the timing data.

The algorithm requires a
blocking variable h, which
influences the timing data.

Time Speedup

Past 8 processors, the
communication starts
to dominate.

Mapping chosen:

Input matrix 1024x1024 with h = 16.Input matrix 1024x1024 with h = 16.

The parallel SVD algorithm consists of both
parallel and serial operations. The simulated
results are provided for the bidiagonalization.

The parallel SVD algorithm consists of both
parallel and serial operations. The simulated
results are provided for the bidiagonalization.

Processors (SPE) Processors (SPE)
8

Sp
ee

du
p

Ti
m

e
(s

ec
)

8

4 8

MIT Lincoln Laboratory
HPEC 2006 - 24
NT 11/29/2006

Database

Benchmark consists of database operations
• Insert - atomic, non parallelizable
• Delete - atomic, non parallelizable
• Search - parallelizable

Benchmark consists of database operations
• Insert - atomic, non parallelizable
• Delete - atomic, non parallelizable
• Search - parallelizable

Mapping chosen:

Cyclic mapping is
chosen for the search
operation - better load
balancing than block
distribution.

Cyclic mapping is
chosen for the search
operation - better load
balancing than block
distribution.

Communication operation
starts to dominate after more
than 4 processors.

Communication operation
starts to dominate after more
than 4 processors.

DATABASE

Distribute Search

Aggregate Results

Time Speedup

Processors (SPE) Processors (SPE) 8

Sp
ee

du
p

Ti
m

e
(s

ec
)

8

0.0
3

4

MIT Lincoln Laboratory
HPEC 2006 - 25
NT 11/29/2006

Application

Template
Files

SAR
Image

Kernel #2
Image

Storage

Groups of
Template

Files

Sub-Image
Detection
Files

Image
Files

SAR
Image

Template
Insertion

Raw
SAR
File

SAR
Image
Files

Kernel #1
Data Read
and Image
Formation

Templates

Raw SAR
Data Files

Approach
• Replace maps with partial maps
• Use pMapper to run and execute on LLGrid

Approach
• Replace maps with partial maps
• Use pMapper to run and execute on LLGrid

Results
• Linear speedup
• Embarrassingly parallel mapping

Results
• Linear speedup
• Embarrassingly parallel mapping

MIT Lincoln Laboratory
HPEC 2006 - 26
NT 11/29/2006

Outline

• Introduction
• Automatic Mapping
• HPEC Challenge
• Results
• Summary

MIT Lincoln Laboratory
HPEC 2006 - 27
NT 11/29/2006

Summary

17/23**Application (SAR)
3.8Database Operations
2.8Genetic Algorithm
8Pattern Match

2.6QR
6.7SVD
8CFAR
8FIR

Speedup (max=8*)MapBenchmark

pMapper finds efficient mappings for all of the
benchmarks and is sensitive to algorithm parameters.
pMapper finds efficient mappings for all of the
benchmarks and is sensitive to algorithm parameters.

*With the exception of the SAR benchmark.
**Results generated on LLGrid using 64 processors.

MIT Lincoln Laboratory
HPEC 2006 - 28
NT 11/29/2006

Acknowledgements

• Robert Bond
• Ryan Haney
• Jeremy Kepner
• Hahn Kim
• Daniel Kunkle
• Julia Mullen
• Edward Rutledge
• Sharon Sacco
• Glenn Schrader
• Ken Senne

