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Next Generation Processing Trends

Analog array Wideband digital array

Array Technology Trends

Multi-processor system Tile processor

Processor Technology Trends

Algorithmic Trends

Signal Processing

Knowledge Processing

Digital arrays require significantly more 
processing than arrays of the past

Applications require both signal 
and knowledge processing

To address the processing challenges parallel systems are being 
architected with multiple processing elements on a single chip.
To address the processing challenges parallel systems are being 
architected with multiple processing elements on a single chip.
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Benchmark Motivation

Quantitative measures of performance are necessary to 
gauge the fitness of systems for emerging applications

Processor systems and architectures

Single processor
element

Cluster
Multi-computer

Tiled processor

HPEC Challenge benchmarks allow for quantitative 
evaluation of processor systems and architectures.
HPEC Challenge benchmarks allow for quantitative 
evaluation of processor systems and architectures.
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Challenge: Mapping the Benchmarks

map2
map3

map1 Mapping each 
benchmark is a 
major challenge

Use automatic mapping 
technology (pMapper) to both
generate maps and predict 
architecture performance

Use automatic mapping 
technology (pMapper) to both
generate maps and predict 
architecture performance

pMapperProcessor

Cell BE
• 1 PPE
• 8 SPEs
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Automatic Mapping: Why?

The size of the search space of possible maps for a computation
is difficult (often impossible) to handle for a human
The size of the search space of possible maps for a computation
is difficult (often impossible) to handle for a human

A = rand(N,M,mapA);
B = zeros(N,M,mapB);
C = zeros(N,M,mapC);
D = rand(N,M,mapD);
E = zeros(N,M,mapE);
B(:,:) = fft(A,[],1);
C(:,:) = fft(B,[],2);
E(:,:) = C*D;

Number of possible maps for the sample program

Example:
3125 possible 
maps onto 16 
processors
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Automatic Mapping: pMapper
pMapper

pMapper is a middleware automatic 
mapping architecture that performs 
dynamic code analysis and global 
optimization.

pMapper is a middleware automatic 
mapping architecture that performs 
dynamic code analysis and global 
optimization.

A = rand(M,N,p);
B = zeros(M,N,p);
C = zeros(M,N,p);
D = rand(M,N,p);
E = zeros(M,N,p);

B = fft(A,[],1);
C = fft(B,[],2);
E = D*C;

mapA = map([1 4],{},[0:3]);
mapB = map([4 1],{},[0:3]);
mapC = map([2 2],{},[0:3]);
mapD = map([2 2],{},[0 2 1 3]);

A = rand(M,N,mapA);
B = zeros(M,N,mapB);
C = zeros(M,N,mapC);
D = rand(M,N,mapD);
E = zeros(M,N,mapD);

B(:,:) = fft(A,[],1);
C(:,:) = fft(B,[],2);
E(:,:) = D*C;

Originally designed to 
map MATLAB 
programs to clusters.

pMatlab pMapper

maps are replaced 
with parallel tags
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Partial Maps

A = rand(M,N,p);
B = zeros(M,N,p);
C = zeros(M,N,p);
D = rand(M,N,p);
E = zeros(M,N,p);

B = fft(A,[],1);
C = fft(B,[],2);
E = D*C;

localE = local(E);
localE = foo(localE);
E = put_local(E, localE);

Initial pMapper design replaced maps with tags and
used the performance model without restriction.
Initial pMapper design replaced maps with tags and
used the performance model without restriction.

+

No mapping 
information has to be 
specified

-

Fragmented global array 
programming model
inhibits optimization

Solution: allow for partial map specification 
and let pMapper fill in the missing information.
Solution: allow for partial map specification 
and let pMapper fill in the missing information. A = rand(M,N,p);

B = zeros(M,N,p);
C = zeros(M,N,p);
D = rand(M,N,p);
pmap = map([1 *]);
E = zeros(M,N,pmap);

B = fft(A,[],1);
C = fft(B,[],2);
E = D*C;

localE = local(E);
localE = foo(localE);
E = put_local(E, localE);

A partial map has one or more of 
the map attributes unspecified

Grid: 1x* 
Dist:
Procs:

Grid: 1x8 
Dist: block
Procs: [0:7]

Full Map Partial Map

map attributes
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Mapping Algorithm

•Use lazy evaluation to collect as much information as possible
•Store the program information as a signal flow graph
•Generate an atlas for the signal flow graph 

•Use lazy evaluation to collect as much information as possible
•Store the program information as a signal flow graph
•Generate an atlas for the signal flow graph 

1
1
2

SFG
 N

o des...

2 3 4

Number of processors

...

Entry (i,j) contains the 
best atlas for the first i 
SFG nodes mapped on 
j processors.

Table is built with an 
algorithm based on 
dynamic programming. 
Each new entry is 
generated based on 
previously generated 
entries. 

Table is built with an 
algorithm based on 
dynamic programming. 
Each new entry is 
generated based on 
previously generated 
entries. 
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Simulated Mapping

PROGRAM
SPEC

SIGNAL
FLOW

EXTRACTOR

PERFORM.
MODEL ATLAS

SIGNAL
FLOW

GRAPH

EXPERT
MAPPING
SYSTEM

PROGRAM
TIMING

PERFORM.
MODEL

SIMULATOR

• Simulate the Cell BE processor using pMapper simulator infrastructure
• Use pMapper to predict mapping and performance on the Cell BE
• Simulate the Cell BE processor using pMapper simulator infrastructure
• Use pMapper to predict mapping and performance on the Cell BE

pMapper can be used to generate maps using a 
program specification and a simulated system.
pMapper can be used to generate maps using a 
program specification and a simulated system.
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Machine Model

n_cpus =
cpu_rate =
mem_rate =
net_rate =
cpu_latency =
mem_latency =
net_latency =
…

Machine model provides description of underlying hardware.Machine model provides description of underlying hardware.

IBM Cell characteristics*
• 8 SPEs (n_cpus)
• Peak FLOPS @ 3.2 Ghz: 204.8 GFLOPS (cpu_rate)
• Processor to Memory bandwidth: 25.6 GB/sec (mem_rate)
• Network bandwidth: 76.8 GB/sec (net_rate)
• ...

IBM Cell characteristics*
• 8 SPEs (n_cpus)
• Peak FLOPS @ 3.2 Ghz: 204.8 GFLOPS (cpu_rate)
• Processor to Memory bandwidth: 25.6 GB/sec (mem_rate)
• Network bandwidth: 76.8 GB/sec (net_rate)
• ...

*Exploring the Cell with HPEC Challenge Benchmarks, S. Sacco, G. Schrader, J. Kepner, M. Marzilli, HPEC 2006.
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HPEC Challenge Overview*
• DARPA PCA program kernel benchmarks

– Single-processor operations
– Drawn from many different DoD applications
– Represent both “front-end” signal processing and “back-end”

knowledge processing
• DARPA HPCS program Synthetic SAR benchmark

– Multi-processor compact application
– Representative of a real application workload
– Designed to be easily scalable and verifiable

• DARPA PCA program kernel benchmarks
– Single-processor operations
– Drawn from many different DoD applications
– Represent both “front-end” signal processing and “back-end”

knowledge processing
• DARPA HPCS program Synthetic SAR benchmark

– Multi-processor compact application
– Representative of a real application workload
– Designed to be easily scalable and verifiable

*The HPEC Challenge Benchmark Suite, R. Haney, T. Meuse, J. Kepner, HPEC 2006.
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Signal Processing and Communication

FIR

QR

CFAR

Front-end Processing
• Data independent, stream-oriented
• Signal processing, image processing
• High-speed network communication

Front-end Processing
• Data independent, stream-oriented
• Signal processing, image processing
• High-speed network communication

Corner Turn*

*The corner turn benchmark was not mapped by pMapper, since the mapping is predefined.
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Knowledge Processing

Red-Black Tree
Data Structure

Linked List
Data Structures

Database 
Operations

Pattern 
Match

Genetic 
Algorithm

Back-end Processing
• Data dependent
• Thread oriented
• Information processing
• Knowledge processing

Back-end Processing
• Data dependent
• Thread oriented
• Information processing
• Knowledge processing
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Application: Synthetic Aperture Radar

SAR
Images

Template
Files

Back-End Knowledge 
Formation

Validation

Template
Files

Groups of
Template
Files

Raw
SAR

Files

SAR
Image

Scalable Data 
and Template 

Generator
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Image 

Storage
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Files
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Image 
Files

Sub-Image
Detection
Files

DetectionsKernel #4 
Detection

SAR
Image

Template
Insertion

Kernel #3
Image 

Retrieval Templates

Raw
SAR
File

SAR
Image
Files

SAR
Image
Files

Kernel #1 
Data Read
and Image 
Formation

Templates

Template
Files

Raw SAR 
Data Files

Front-End Sensor Processing
Intent of application benchmark
• Scalable
• High compute fidelity
• Low physical fidelity
• Self-verifying

Intent of application benchmark
• Scalable
• High compute fidelity
• Low physical fidelity
• Self-verifying

Focus on 
computation

*HPEC Challenge SAR Benchmark pMatlab Implementation and Performance, J. Mullen, T. Meuse, J. Kepner, HPEC 2006.
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Embarrassingly Parallel: FIR  
Bank of input vectors

K Filter coefficients

Length of the input vector is equal to N and the 
number of input vectors is equal to M,
•The dataset can be represented as a 1xNxM array
•The filter is small enough to be replicated

Length of the input vector is equal to N and the 
number of input vectors is equal to M,
•The dataset can be represented as a 1xNxM array
•The filter is small enough to be replicated

122010242
1286440961

KMNDatasetTime and Speedup for Dataset 2

pMapper chooses the embarrassingly parallel 
mapping on 8 SPEs and produces linear speedup.
pMapper chooses the embarrassingly parallel 
mapping on 8 SPEs and produces linear speedup.

Processors used:

Mapping:
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Embarrassingly Parallel

Pattern Match

Break the bank of 
patterns between 
processors

Break the bank of 
patterns between 
processors
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CFAR

Break up the data 
cube along the third 
(beams) dimension

Break up the data 
cube along the third 
(beams) dimension

Mapping chosen: Time Speedup

Mapping chosen:

Time Speedup
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Genetic Algorithm

104004
51003
962002
8501

M 
chromosome

N 
population

Dataset

The algorithm implementation consists of
• Embarrassingly parallel crossover and mutation steps
• Communication step for each generation

The algorithm implementation consists of
• Embarrassingly parallel crossover and mutation steps
• Communication step for each generation

1.

2.

3.

4.

Observations:
• For smaller populations, communication step dominates

• pMapper chooses to use a single processor (SPE)
• For larger populations, distribution is beneficial

• pMapper correctly balances communication to 
computation ratio when determining the mapping

PopulationProcessors

Speedup achieved up to 3 
processors. Afterwards, 
communication dominates.
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QR

Parallel Implementation

pMapper traverses the landscape 
of solutions and finds solutions 
that are in the valleys.

pMapper traverses the landscape 
of solutions and finds solutions 
that are in the valleys.

Time Speedup Time vs.
Processors vs. 
Matrix Dimensions

Mapping chosen:

At more than 6 processors, the 
communication starts to dominate.
At more than 6 processors, the 
communication starts to dominate.

Global processing of Givens Rotation
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SVD
Parallel SVD via Block-Householder Bidiagonalization

The algorithm requires a 
blocking variable h, which 
influences the timing data.

The algorithm requires a 
blocking variable h, which 
influences the timing data.

Time Speedup

Past 8 processors, the 
communication starts 
to dominate.

Mapping chosen:

Input matrix 1024x1024 with h = 16.Input matrix 1024x1024 with h = 16.

The parallel SVD algorithm consists of both 
parallel and serial operations. The simulated 
results are provided for the bidiagonalization.

The parallel SVD algorithm consists of both 
parallel and serial operations. The simulated 
results are provided for the bidiagonalization.

Processors (SPE) Processors (SPE)
8

Sp
ee

du
p

Ti
m

e 
(s

ec
)

8

4 8



MIT Lincoln Laboratory
HPEC 2006 - 24
NT 11/29/2006

Database

Benchmark consists of database operations
• Insert - atomic, non parallelizable 
• Delete - atomic, non parallelizable
• Search - parallelizable

Benchmark consists of database operations
• Insert - atomic, non parallelizable 
• Delete - atomic, non parallelizable
• Search - parallelizable

Mapping chosen:

Cyclic mapping is 
chosen for the search 
operation - better load 
balancing than block 
distribution.

Cyclic mapping is 
chosen for the search 
operation - better load 
balancing than block 
distribution.

Communication operation 
starts to dominate after more 
than 4 processors.

Communication operation 
starts to dominate after more 
than 4 processors.

DATABASE

Distribute Search

Aggregate Results

Time Speedup
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Application
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Approach
• Replace maps with partial maps
• Use pMapper to run and execute on LLGrid

Approach
• Replace maps with partial maps
• Use pMapper to run and execute on LLGrid

Results
• Linear speedup
• Embarrassingly parallel mapping

Results
• Linear speedup
• Embarrassingly parallel mapping
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Summary

17/23**Application (SAR)
3.8Database Operations
2.8Genetic Algorithm
8Pattern Match

2.6QR
6.7SVD
8CFAR
8FIR

Speedup (max=8*)MapBenchmark

pMapper finds efficient mappings for all of the 
benchmarks and is sensitive to algorithm parameters.
pMapper finds efficient mappings for all of the 
benchmarks and is sensitive to algorithm parameters.

*With the exception of the SAR benchmark.
**Results generated on LLGrid using 64 processors.
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