
*This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Automatic Mapping of the HPEC Challenge Benchmarks*
Nadya Travinin Bliss, Jason Dahlstrom, Daniel Jennings, Sanjeev Mohindra

{nt, jdahlstrom, dsj, smohindra}@ll.mt.edu
MIT Lincoln Laboratory, Lexington, MA 02420

Abstract
This talk presents the automatic mapping results of the
HPEC Challenge benchmarks onto an embedded tiled
architecture using pMapper. pMapper is a novel automatic
mapping system originally designed for automatic mapping
of MATLAB programs onto commodity cluster systems.
Here, the pMapper architecture is extended to address the
mapping of applications onto tiled architectures. These
extensions are achievable due to the modularity and
flexibility of the pMapper architecture, demonstrating the
versatility of the design. After reviewing the HPEC
Challenge benchmarks, which are developed to evaluate
the performance of multiprocessor HPEC systems, the
effectiveness of pMapper is discussed. In the talk, mapping
results for all of the benchmarks are presented. As an
example, for the convolution benchmark, pMapper finds
the optimal mapping which yields an ideal linear speedup.

Introduction
As bandwidths and signal processing complexity increase
in modern sensor systems, the computational performance
requirements also increase. In order to handle the increased
processing needs, embedded systems are architected with
multiple processing elements. This trend is accelerating –
not only do current systems have multiple CPUs, the CPUs
of emerging tiled architectures combine multiple compute
elements in a single chip. The HPEC Challenge benchmark
suite contains kernel level and system level benchmarks for
measuring performance of multiprocessor systems. To
derive the performance, traditionally the benchmarks are
mapped onto the system by an expert parallel algorithm
developer. Mapping of algorithms to architectures is a non-
trivial task.

pMapper
pMapper is based on a 2-phase automatic mapping
architecture designed to distribute signal processing
applications onto multi-processor systems [1]. During the
first phase, Initialization, pMapper collects performance
information on a given system and stores that information
in a performance model. The initialization is done once for
a given system. The second phase, Mapping and Execution,
is performed for every program submitted to the system.
pMapper uses dynamic code analysis in order to achieve
global or program flow optimization. Specifically,
pMapper chooses an efficient set of maps for the entire
program, not a single function.

pMapper was originally designed for automatically
mapping MATLAB programs onto large-scale grid
computing systems, such as the LLGrid [2]. However, due
to its versatility, pMapper can also be used as a tool for
mapping algorithms onto embedded systems. pMapper also

has the ability to simulate and predict the performance of
such systems. Figure 1 illustrates the Mapping and
Execution phase set up to predict mappings onto the IBM
Cell processor [3].

Figure 1: Mapping and Execution with Simulated Cell.

IBM’s Cell processor is chosen as a representative tiled
architecture. Let us consider each component of the
mapping and execution phase in detail. The Performance
Model is a lookup table of timing data derived from the
Cell processor machine model. The machine model
consists of processor characteristics such as latency,
bandwidth, and processor speed. The Program Spec is a
MATLAB specification for the program being mapped.
The Signal Flow Extractor extracts the program parse tree
and, by utilizing lazy evaluation, collects as much
information as possible about the program prior to the
mapping. The Expert Mapping System uses the Signal
Flow Graph (SFG) together with the Performance Model to
produce an efficient set of maps, or an atlas, for the
program. For more information on these components see
[1]. Note that when being used as a mapping tool, pMapper
does not execute the program, but instead simulates it. The
Simulator produces the expected runtime of the program on
the simulated architecture.

HPEC Challenge
The HPEC Challenge benchmark suite [4] was developed
to allow for quantitative evaluation of multiprocessor
systems. It consists of both kernel level and compact
application benchmarks. Originally the kernel level
benchmarks were designed to evaluate the performance of
polymorphous computing architectures (PCAs). However,
MIT Lincoln Laboratory is currently using them to evaluate
performance of the Cell processor, which consists of a
PowerPC processor and 8 Synergistic Processing Elements
(SPEs). The kernel benchmarks consist of signal processing
kernels, information processing kernels, and a
communication kernel. The compact application
benchmark combines all of the kernels in the Scalable
Synthetic Compact Application #3 (SSCA #3), a
benchmark used in the HPCS program [5]. The SSCA #3 is
based on an implementation of Synthetic Aperture Radar
(SAR).

pMapper Mapping and Results
pMapper with the Cell machine model is used to produce
mappings for the HPEC Challenge Benchmarks. This
section presents the mapping results for one of the signal
processing kernels, the convolution, and one of the
information processing kernels, the genetic algorithm.
Figure 2 is the Program Spec for the convolution
benchmark.

Figure 2: pMapper bank of convolutions code.

This benchmark consists of a bank of convolutions. In the
MATLAB code, this bank of convolutions can be
represented with a 3-dimension array (line 2 in Figure 2).
Note that the p in the constructor call is used to indicate to
pMapper that the object should be considered for
distribution. Once the array is created, each convolution
can be represented by a FOR loop iterating over the third
dimension of the array. The last statement in the program,
with the omitted semi-colon, is a data display statement in
MATLAB syntax. At this point, the data must be returned
to the user. This causes the extraction and the mapping of
the SFG. pMapper produces ideal linear speedup for this
application as illustrated in Figure 3.

Figure 3: Convolution speedup.

pMapper produces an embarrassingly parallel mapping for
this benchmark, i.e. divides the convolutions in the bank
between all eight of the Cell SPEs. This is the best
mapping for this benchmark and is the mapping chosen by
an expert mapper.

The genetic algorithm (GA) benchmark requires the
implementation a simple genetic algorithm which consists
of population initialization, and then for each generation,
selection of parents, crossover, and mutation. The mapping
results for the genetic algorithm benchmark are more
interesting. In this case the linear speedup is not achievable
as the benchmark requires communication between each
generation of the genetic algorithm. The code is not shown

here to save space; however, let us note that the Program
Spec in MATLAB stores the population as an N by M
matrix where N is the size of the population and M is the
length of the chromosome. Figure 4 shows the speedup
curve produced by pMapper.

Figure 4: Genetic algorithm speedup.

In the case of this benchmark, pMapper only chooses to use
three of the available 8 processors in order to balance
communication and computation. Higher speedup is not
achievable for this benchmark, so while the theoretical
optimum is not achieved, pMapper does achieve the
maximum possible speedup for this algorithm.

Summary
pMapper is an automatic mapping architecture that allows
prediction of mapping onto and performance of
multiprocessor embedded systems, including tiled
architectures. HPEC Challenge benchmarks were
developed for evaluating the performance of HPEC
multiprocessor systems. Mapping the benchmarks onto the
systems can be a laborious task. However, pMapper can
automatically generate efficient mappings for the
benchmarks by removing much of this complexity. The
convolution benchmark mapped by pMapper yielded ideal
linear speedup, the genetic algorithm mapping achieved the
maximum speedup for the algorithm. More detailed results
for both the convolution and the GA will be presented in
the talk, as well as the results for other kernel benchmarks
and the SSCA #3 compact application benchmark.

References
[1] N. Travinin, H. Hoffmann, R. Bond, H. Chan, J. Kepner, E.
Wong, “pMapper: Automatic Mapping of Parallel Matlab
Programs,” HPEC 2005 Workshop, Lexington, MA, September
2005.
[2] A. Reuther, T. Currie, J. Kepner, H. Kim, A. McCabe, M.
Moore and N. Travinin, “LLgrid: Enabling On-Demand Grid
Computing with gridMatlab and pMatlab,” HPEC Workshop
2004, Lexington, MA, September 2004.
[3] T. Chen, R. Raghavan, J. Dale, E. Iwata, “Cell Broadband
Engine Architecture and its first implementation,” http://www-
128.ibm.com/developerworks/power/library/pa-cellperf/,
November 2005.
[4] R. Haney, T. Meuse, J. Kepner, J. Lebak, “The HPEC
Challenge Benchmark Suite,” HPEC 2005 Workshop, Lexington,
MA, September 2005.
[5] HPCS: High Productivity Computer Systems,
http://www.highproductivity.org.

