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Overview

• Demand for Cognitive Processing
• Historical Architectures for AI / Cognitive Processing
• SAT Solvers as a Cognitive Application
• Application Specific Hardware
• Parallelizing SAT
• Current Performance
• Architectural Implications
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Demand for Architectures for Cognitive Processing

• Signal/Knowledge Processing Algorithms
• Workload in the “Knowledge Processing Section” comparable 

to the “Signal Processing Section”
• Problem: how can we make “Knowledge Processing” more 

efficient through better architectures?
• Study SAT Solvers as an example.
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Computer Architectures for AI

Symbolics, 1986

Source: http://en.wikipedia.org/wiki/Lisp_machines

Lisp Machines, ~1983
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Computer Architectures for AI

Fifth Generation Computing Systems
Project, ICOT, 1982-1993
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Computer Architectures for AI

Columbia NON-VON 1981-1987

Independent SIMD engines

Massive Parallelism

VLSI and network efficiency

Multiple AI algorithms
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Computer Architectures for AI

Connection Machine 2 (1988)
Massive Parallelism
Massive Interconnect
SIMD
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Computer Architectures for AI

J-Machine, MIT 1993
MIMD
Message-Driven Processors
VLSI and network efficiency
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Common Architecture Themes

• Parallelism
• Fine Grained Architectures
• High Performance Networking (Bisection, Latency)
• MIMD or SIMD
• Distributed Memory
• Specialized Operators

• What’s changed?
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The Satisfiability Problem (SAT)

Definition: Given a Boolean formula    , decide if there is some assignment 
to the variables in     such that     evaluates to true

Example: 

Solution:     evaluates to true (is satisfied) if = 0, = 1, and     = 1
)()()( 3132121 xxxxxxxE ∨∧∨∨∧∨=

1x 2x 3xE
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• Recent significant progress 1,000,000 variables
• Some SAT Applications

– Planning: Route planning; mission planning

– Software Verification: Verifying numerical precision and 
interprocedural control flow; assertion checking; proving that an 
implementation meets a specification

– Hardware Verification: Bounded model checking; test pattern 
generation
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SAT as a Cognitive Application

• Naive algorithm (Davis-Putnam) 
– Complete backtracking exploration of the search space

• Improved algorithm (Davis-Putnam-Logemann-Loveland)
– Introduced Boolean Constraint Propagation (BCP)

• Based on unit clause rule
– Still explores multiple paths through unsatisfiable space

• Modern SAT algorithms (up to millions of clauses recently)
– Conflict resolution

• Uses learning to prune unsatisfiable search space
– Non-chronological backtracking

• Integrated with conflict resolution
• Prevent solver from exploring unsatisfiable search space

– Decision heuristics
• Choose most active variables to assign

– Restarts
• Can allow solvers to escape local minima

• Search is a fundamental AI problem
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SAT as a good application for AI architecture research

• Distills what we think of as an “AI application” into an 
apparently simple problem.
– Search, mixed with following inferences
– Big databases of clauses
– Irregular access to a big database
– Learning!
– Data-dependent control flow
– Arbitrary amounts of parallelism
– Independent threads going in seemingly different directions

• But… the simplicity is deceptive!
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General Architecture Techniques for Accelerating Applications

• Functional Concurrency - Distinct computational tasks are 
executed in parallel on different pieces of hardware.

• Data Concurrency - Data is partitioned and operated on in parallel 
by multiple processors.

• Thread Concurrency - Sequential sequences of instructions are 
partitioned and executed in parallel.

• Special Representations - Special data formats hold application-
specific data efficiently for increased performance.

• Special Operators - Special operators accelerate operations which 
frequently occur in an application.

• Pipelining - Data or instructions are moved in lock step through 
stages of a sequential operation.

• Data choreography - Hardware is laid out so as to minimize the 
physical movement of the data between computational units.

• Circuit Techniques - Circuit techniques exist to minimize latency or 
power consumption, or to maximize throughput or clock frequency.
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Prior Work on Specialized Architectures for SAT

• FPGAs
– Requires chip area and compile time proportional 

to size of problem.
– Poor choice: does not scale well.

• Princeton Architecture (Zhao/Malik)
– Tensilica cores customized as processing nodes 

and routers with special operators.
– On-chip network in a torus network.
– Embedded DRAM to store distributed database.
– Similar to MIT’s RAW PCA architecture.
– Takes advantage of fine-grained parallelism for 20x 

to 60x performance improvement.
• LAN-Based Parallel Solvers

– Take advantage of coarse-grained parallelism for 
1x to 20x performance improvement.

– Replication of data limits ability to solve very large 
problems.

Special-purpose SAT architecture
Source: Zhao01
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Simulated Results

Coarse-grained parallelism accelerates SAT

Caching allows for scaling of parallel SAT
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• If the network is low-latency or the clause database is 
replicated per node, additional parallel threads reduce 
runtime.

• Simulations show between 1x and 20x performance 
improvement from coarse-grained parallelism (similar to 
GridSAT and PaSAT).

• For higher-latency networks with a distributed 
clause database, caching often helps to reduce 
runtime.

• Occasionally, caching increases runtime because 
the search path changes.
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Simulated Results (continued)

Load balancing is critical to distributed parallel SAT

• Without load balancing, most 
threads die immediately and 
remain idle for the remainder 
of the search.

• A work-stealing strategy 
keeps threads active and 
significantly reduces search 
time (in this example by 
37%).

Work 
Stealing 
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Work 
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Load Balancing

• Runtime of search threads is 
highly variable

– Load balancing is critical to keeping 
threads active

– Reduces search time significantly
– Uses random victim strategy

• Heuristic: try to share a 
substantial amount of productive 
work

– Branch low in the assignment stack
– Branch on variables where the 

decision heuristic was “unsure”

• Implemented with minimal 
overhead for victim thread

– Merge low decision levels to prevent 
unnecessary backtracking

Runtime of search threads with 
and without load balancing. With 
load balancing, total search time 
reduced by 37% for this example. 
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Design Choices

• Distribute clauses over the processors of the machine

• Reduce bisection load on the network
– Message-driven implementation
– Emphasize static mapping of clauses to improve locality
– “GUPS problem”

• Build competitive sequential solver first
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Alef System

Alef system: uses Reservoir’s R-
Stream compiler technology, parallel 
SAT engine, and HPCS hardware to 
solve military and commercial planning 
and verification problems.

• Alef compiler: accepts planning and 
formal verification problems and 
transforms them to the Salt language.

• Salt tool: translates Salt language into 
CNF with partition annotations. 
Performs optimizations based on lazy-
inference that reduce the size of the 
resulting CNF representation. 

• Parallel SAT solver: incorporates 
parallel algorithms and state-of-the-art 
solver heuristics to achieve significant 
speedup on some structured problems.
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Alef Parallel SAT Solver

• Multithreaded implementation 
allows solver to explore the search 
space in parallel

• Message passing approach 
reduces network load and round-
trip message delays 

• Mapping algorithm distributes data 
to reduce communication load

• Solver supports decision heuristics 
tuned for specific problems

• Dynamic load balancing ensures 
processing resources remain busy

• Asynchronous sharing of learned 
information allows parallel threads 
to work together
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Alef Mapper

• Mapping is the process of distributing clauses 
between worker threads

• Critical to performance because it determines 
the amount of communication required between 
nodes

• Places variable sized logical partitions of 
clauses into physical memory

– Optimal solution is NP-Hard; heuristic used instead

• Mapper features:
– Places strongly connected logical partitions together
– Balances distribution and replication of clauses based 

on problem size and communication overhead
– Written for scalability and to allow for empirical tuning

• Falls back to a pre-sorted first-fit greedy bin 
packing algorithm if mapping algorithm fails
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Communication Layer

• Currently implemented on top of MPI
– Thin, low-overhead abstraction layer
– MPI easily swapped out

• Efficient 
– Message pooling decreases overhead of MPI 
– Zero-copy inner loops
– Message sizes optimized for machine 
– Space-sensitive encoding schemes
– Local messages bypass MPI

• Useful Semantics
– Provides one-sided send and receive, 

request and respond
– Detection and elimination of stale messages
– Transparent multipart message handling
– High and normal priority queues
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Parallel Heuristic Interactions

Load Balancing

Work Stealing
Decision Strategy

Portfolios

Learning

Clause Sharing

Parallelism

Multiple Threads

Intelligent clause sharing 
depends on decision 
strategy.  Decision 
strategies choose 
branching variables from 
conflict clauses to keep 
search local.

Parallel threads learn different 
conflict clauses, which are shared.

Load balancing is 
required to keep 
hardware active 
because of variable 
runtimes of search 
threads. 

Portfolios of decision strategies lead to 
variable runtimes of search threads.

Shared clauses may prune search 
space in other threads, lowering 

search time. 

Portfolios of decision strategies 
allow parallel search of the same 

space in different ways.
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How? Distributed Conflict Resolution

• Fully-distributed algorithm builds 
conflict clause

– Finds the articulation point between 
conflicted variable and decision variable 
closest to the conflict (first UIP)

– First UIP is vertex where flow from 
conflicted variables sums to 1

• Differs from distributed min-cut max-
flow algorithm

– Not an optimization problem
– Finds max flow between 3 vertices

• Does not require construction of 
implication graph

– Minimizes storage requirements

• Implementation is challenging
– Sidelined for later version of the solver Simple Implication Graph
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Sequential Conflict Resolution

• Conflict resolution is a critical modern SAT solver heuristic
– Solver finds the combination of decisions that led to a conflict and learns by 

building a conflict clause
– Conflict clauses prune the search space, making large problems tractable

• First unique implication point (UIP) algorithm 
– Solver walks backwards in directed acyclic graph of implications (implication 

graph) from the conflicted variables towards the decision
– Finds the first articulation point between the conflicted variables and the decision 

point (the first UIP)

• Implications are discovered in parallel but traversed sequentially
– Maintaining order for sequential traversal in a parallel environment is difficult
– Implications arrive in any order and represent multiple implication graphs

• Techniques for implementation in parallel environment
– Order marks are used to maintain correct order and distinguish between graphs
– Other marks indicate the subset of unique copies of implications
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How? Regulation of Message Driven Programs

• Message-driven approach reduces round trip transactions on 
the network.

• But: what if some processor is a hotspot?  How is 
backpressure induced, and what is the effect?

• Distributed cached shared memory approach “naturally”
regulates computation, “smoothes” hotspots.

• Current approach: use memory for queues, but needs more 
work, experimentation, and thought.
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Current Status

• Parallel solver on-line
– Multiple worker threads (BCP engines) on-line
– Sequential implementation of conflict resolution
– Optimized communication layer
– Multiple decision heuristics
– Running on Cray XD-1 and Xeon machines
– Signs of good scalability to 10 processors

• Salt language tool version 1.0 in distribution
– Provides a means for generating SAT from different problem domains (e.g., 

planning, software verification)
– Annotations to assist mapper

• Misc. Front ends implemented
– Generate SAT problem instances from C programs 

• An apparently simple problem offers some significant challenges to 
parallelization


