
1r eser voi r abs 2006 High Performance
Embedded Computing Workshop

SAT Solvers for Investigation of Architectures for
Cognitive Information Processing

Richard A. Lethin, James R. Ezick,
Samuel B. Luckenbill, Donald D. Nguyen,

John A. Starks, Peter Szilagyi
Reservoir Labs, Inc.

DARPA IPTO/ACIP-SBIR W31P4Q-04-C-R257

Sponsored by DARPA in the ACIP Program,
William Harrod, IPTO, Program Manager

Thomas Bramhall, AMCOM, Agent

2r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Overview

• Demand for Cognitive Processing
• Historical Architectures for AI / Cognitive Processing
• SAT Solvers as a Cognitive Application
• Application Specific Hardware
• Parallelizing SAT
• Current Performance
• Architectural Implications

3r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Demand for Architectures for Cognitive Processing

• Signal/Knowledge Processing Algorithms
• Workload in the “Knowledge Processing Section” comparable

to the “Signal Processing Section”
• Problem: how can we make “Knowledge Processing” more

efficient through better architectures?
• Study SAT Solvers as an example.

4r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Computer Architectures for AI

Symbolics, 1986

Source: http://en.wikipedia.org/wiki/Lisp_machines

Lisp Machines, ~1983

5r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Computer Architectures for AI

Fifth Generation Computing Systems
Project, ICOT, 1982-1993

6r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Computer Architectures for AI

Columbia NON-VON 1981-1987

Independent SIMD engines

Massive Parallelism

VLSI and network efficiency

Multiple AI algorithms

7r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Computer Architectures for AI

Connection Machine 2 (1988)
Massive Parallelism
Massive Interconnect
SIMD

8r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Computer Architectures for AI

J-Machine, MIT 1993
MIMD
Message-Driven Processors
VLSI and network efficiency

9r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Common Architecture Themes

• Parallelism
• Fine Grained Architectures
• High Performance Networking (Bisection, Latency)
• MIMD or SIMD
• Distributed Memory
• Specialized Operators

• What’s changed?

10r eser voi r abs 2006 High Performance
Embedded Computing Workshop

The Satisfiability Problem (SAT)

Definition: Given a Boolean formula , decide if there is some assignment
to the variables in such that evaluates to true

Example:

Solution: evaluates to true (is satisfied) if = 0, = 1, and = 1
)()()(3132121 xxxxxxxE ∨∧∨∨∧∨=

1x 2x 3xE

E
EE

• Recent significant progress 1,000,000 variables
• Some SAT Applications

– Planning: Route planning; mission planning

– Software Verification: Verifying numerical precision and
interprocedural control flow; assertion checking; proving that an
implementation meets a specification

– Hardware Verification: Bounded model checking; test pattern
generation

11r eser voi r abs 2006 High Performance
Embedded Computing Workshop

SAT as a Cognitive Application

• Naive algorithm (Davis-Putnam)
– Complete backtracking exploration of the search space

• Improved algorithm (Davis-Putnam-Logemann-Loveland)
– Introduced Boolean Constraint Propagation (BCP)

• Based on unit clause rule
– Still explores multiple paths through unsatisfiable space

• Modern SAT algorithms (up to millions of clauses recently)
– Conflict resolution

• Uses learning to prune unsatisfiable search space
– Non-chronological backtracking

• Integrated with conflict resolution
• Prevent solver from exploring unsatisfiable search space

– Decision heuristics
• Choose most active variables to assign

– Restarts
• Can allow solvers to escape local minima

• Search is a fundamental AI problem

12r eser voi r abs 2006 High Performance
Embedded Computing Workshop

SAT as a good application for AI architecture research

• Distills what we think of as an “AI application” into an
apparently simple problem.
– Search, mixed with following inferences
– Big databases of clauses
– Irregular access to a big database
– Learning!
– Data-dependent control flow
– Arbitrary amounts of parallelism
– Independent threads going in seemingly different directions

• But… the simplicity is deceptive!

13r eser voi r abs 2006 High Performance
Embedded Computing Workshop

General Architecture Techniques for Accelerating Applications

• Functional Concurrency - Distinct computational tasks are
executed in parallel on different pieces of hardware.

• Data Concurrency - Data is partitioned and operated on in parallel
by multiple processors.

• Thread Concurrency - Sequential sequences of instructions are
partitioned and executed in parallel.

• Special Representations - Special data formats hold application-
specific data efficiently for increased performance.

• Special Operators - Special operators accelerate operations which
frequently occur in an application.

• Pipelining - Data or instructions are moved in lock step through
stages of a sequential operation.

• Data choreography - Hardware is laid out so as to minimize the
physical movement of the data between computational units.

• Circuit Techniques - Circuit techniques exist to minimize latency or
power consumption, or to maximize throughput or clock frequency.

14r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Prior Work on Specialized Architectures for SAT

• FPGAs
– Requires chip area and compile time proportional

to size of problem.
– Poor choice: does not scale well.

• Princeton Architecture (Zhao/Malik)
– Tensilica cores customized as processing nodes

and routers with special operators.
– On-chip network in a torus network.
– Embedded DRAM to store distributed database.
– Similar to MIT’s RAW PCA architecture.
– Takes advantage of fine-grained parallelism for 20x

to 60x performance improvement.
• LAN-Based Parallel Solvers

– Take advantage of coarse-grained parallelism for
1x to 20x performance improvement.

– Replication of data limits ability to solve very large
problems.

Special-purpose SAT architecture
Source: Zhao01

15r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Simulated Results

Coarse-grained parallelism accelerates SAT

Caching allows for scaling of parallel SAT

0
20000
40000
60000
80000

100000
120000
140000
160000

CBS_b10
aim-200 ais6

bw_large
.b

flat
175-1 ii8a2

jnh1
par8-1-c

ssa7552
-160

sw100-1
uu f100-01

R
un

tim
e

(c
yc

le
s)

Cache Off
Cache On

• If the network is low-latency or the clause database is
replicated per node, additional parallel threads reduce
runtime.

• Simulations show between 1x and 20x performance
improvement from coarse-grained parallelism (similar to
GridSAT and PaSAT).

• For higher-latency networks with a distributed
clause database, caching often helps to reduce
runtime.

• Occasionally, caching increases runtime because
the search path changes.

16r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Simulated Results (continued)

Load balancing is critical to distributed parallel SAT

• Without load balancing, most
threads die immediately and
remain idle for the remainder
of the search.

• A work-stealing strategy
keeps threads active and
significantly reduces search
time (in this example by
37%).

Work
Stealing

Off

Work
Stealing

On

17r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Load Balancing

• Runtime of search threads is
highly variable

– Load balancing is critical to keeping
threads active

– Reduces search time significantly
– Uses random victim strategy

• Heuristic: try to share a
substantial amount of productive
work

– Branch low in the assignment stack
– Branch on variables where the

decision heuristic was “unsure”

• Implemented with minimal
overhead for victim thread

– Merge low decision levels to prevent
unnecessary backtracking

Runtime of search threads with
and without load balancing. With
load balancing, total search time
reduced by 37% for this example.

18r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Design Choices

• Distribute clauses over the processors of the machine

• Reduce bisection load on the network
– Message-driven implementation
– Emphasize static mapping of clauses to improve locality
– “GUPS problem”

• Build competitive sequential solver first

19r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Alef System

Alef system: uses Reservoir’s R-
Stream compiler technology, parallel
SAT engine, and HPCS hardware to
solve military and commercial planning
and verification problems.

• Alef compiler: accepts planning and
formal verification problems and
transforms them to the Salt language.

• Salt tool: translates Salt language into
CNF with partition annotations.
Performs optimizations based on lazy-
inference that reduce the size of the
resulting CNF representation.

• Parallel SAT solver: incorporates
parallel algorithms and state-of-the-art
solver heuristics to achieve significant
speedup on some structured problems.

20r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Alef Parallel SAT Solver

• Multithreaded implementation
allows solver to explore the search
space in parallel

• Message passing approach
reduces network load and round-
trip message delays

• Mapping algorithm distributes data
to reduce communication load

• Solver supports decision heuristics
tuned for specific problems

• Dynamic load balancing ensures
processing resources remain busy

• Asynchronous sharing of learned
information allows parallel threads
to work together

21r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Alef Mapper

• Mapping is the process of distributing clauses
between worker threads

• Critical to performance because it determines
the amount of communication required between
nodes

• Places variable sized logical partitions of
clauses into physical memory

– Optimal solution is NP-Hard; heuristic used instead

• Mapper features:
– Places strongly connected logical partitions together
– Balances distribution and replication of clauses based

on problem size and communication overhead
– Written for scalability and to allow for empirical tuning

• Falls back to a pre-sorted first-fit greedy bin
packing algorithm if mapping algorithm fails

22r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Communication Layer

• Currently implemented on top of MPI
– Thin, low-overhead abstraction layer
– MPI easily swapped out

• Efficient
– Message pooling decreases overhead of MPI
– Zero-copy inner loops
– Message sizes optimized for machine
– Space-sensitive encoding schemes
– Local messages bypass MPI

• Useful Semantics
– Provides one-sided send and receive,

request and respond
– Detection and elimination of stale messages
– Transparent multipart message handling
– High and normal priority queues

23r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Parallel Heuristic Interactions

Load Balancing

Work Stealing
Decision Strategy

Portfolios

Learning

Clause Sharing

Parallelism

Multiple Threads

Intelligent clause sharing
depends on decision
strategy. Decision
strategies choose
branching variables from
conflict clauses to keep
search local.

Parallel threads learn different
conflict clauses, which are shared.

Load balancing is
required to keep
hardware active
because of variable
runtimes of search
threads.

Portfolios of decision strategies lead to
variable runtimes of search threads.

Shared clauses may prune search
space in other threads, lowering

search time.

Portfolios of decision strategies
allow parallel search of the same

space in different ways.

24r eser voi r abs 2006 High Performance
Embedded Computing Workshop

How? Distributed Conflict Resolution

• Fully-distributed algorithm builds
conflict clause

– Finds the articulation point between
conflicted variable and decision variable
closest to the conflict (first UIP)

– First UIP is vertex where flow from
conflicted variables sums to 1

• Differs from distributed min-cut max-
flow algorithm

– Not an optimization problem
– Finds max flow between 3 vertices

• Does not require construction of
implication graph

– Minimizes storage requirements

• Implementation is challenging
– Sidelined for later version of the solver Simple Implication Graph

25r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Sequential Conflict Resolution

• Conflict resolution is a critical modern SAT solver heuristic
– Solver finds the combination of decisions that led to a conflict and learns by

building a conflict clause
– Conflict clauses prune the search space, making large problems tractable

• First unique implication point (UIP) algorithm
– Solver walks backwards in directed acyclic graph of implications (implication

graph) from the conflicted variables towards the decision
– Finds the first articulation point between the conflicted variables and the decision

point (the first UIP)

• Implications are discovered in parallel but traversed sequentially
– Maintaining order for sequential traversal in a parallel environment is difficult
– Implications arrive in any order and represent multiple implication graphs

• Techniques for implementation in parallel environment
– Order marks are used to maintain correct order and distinguish between graphs
– Other marks indicate the subset of unique copies of implications

26r eser voi r abs 2006 High Performance
Embedded Computing Workshop

How? Regulation of Message Driven Programs

• Message-driven approach reduces round trip transactions on
the network.

• But: what if some processor is a hotspot? How is
backpressure induced, and what is the effect?

• Distributed cached shared memory approach “naturally”
regulates computation, “smoothes” hotspots.

• Current approach: use memory for queues, but needs more
work, experimentation, and thought.

27r eser voi r abs 2006 High Performance
Embedded Computing Workshop

Current Status

• Parallel solver on-line
– Multiple worker threads (BCP engines) on-line
– Sequential implementation of conflict resolution
– Optimized communication layer
– Multiple decision heuristics
– Running on Cray XD-1 and Xeon machines
– Signs of good scalability to 10 processors

• Salt language tool version 1.0 in distribution
– Provides a means for generating SAT from different problem domains (e.g.,

planning, software verification)
– Annotations to assist mapper

• Misc. Front ends implemented
– Generate SAT problem instances from C programs

• An apparently simple problem offers some significant challenges to
parallelization

