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Introduction1

Solvers for the Boolean satisfiability problem (SAT) are an 
enabling technology for a diverse set of applications 
relevant to the HPEC community. These applications 
include formal verification, analysis of numerical precision 
for embedded pipelines, and cognitive reasoning. However, 
solver performance, measured in terms of speed and 
maximum problem size, is a limiting factor to the 
application of SAT to real-world problems. We are 
developing a constraint language, translation tool, and 
parallel SAT solver to significantly mitigate the impact of 
these limitations. 

Salt is a universal language and translation tool for 
constraint systems. With Salt, we can optimize the 
representation of real-world constraint systems to the 
characteristics of a target solver, thus realizing the solver’s 
full potential. Alef is a parallel SAT solver that distributes 
both the storage and computational requirements of a SAT 
instance across multiple nodes. Our analysis shows that we 
are likely to achieve a consistent performance improvement 
over existing solvers in terms of speed and allowable 
problem size. We expect to demonstrate the performance of 
the complete pipeline running on a Cray XD1 [1] in the 
near future. These advances are making it possible for us to 
reexamine previously intractable verification, numerical 
precision, and cognitive problems. 

The Boolean Satisfiability Problem 
Given a propositional logic formula, Boolean satisfiability 
is the problem of finding an assignment to the variables of 
the formula such that the formula evaluates to true. 
Formulas for which such an assignment exists are 
satisfiable. In the general case, finding a satisfying 
assignment is an NP-complete problem. However, modern 
solvers use a range of heuristics and optimizations based on 
logical inference that allow them to solve some real-world 
instances with more than one million variables [2][3]. 

 

                                                

In addition to the generality of the approach and the 
existence of highly tuned solvers, SAT is an attractive 
formulation for embedded pipeline analysis and cognitive 
reasoning because of the one-to-one correspondence that 
can be encoded between individual signals and individual 
propositional variables. For embedded pipeline analysis, 
this correspondence allows us to analyze the 
implementation of computer arithmetic as opposed to a 
mathematical abstraction. For cognitive problems, 
individual variables concisely capture atomic facts that can 
be assumed, learned, or refuted. 
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Closing the Programming Gap 
Most solvers require that SAT problem instances be 
specified in conjunctive normal form (CNF). CNF is a 
representation of a formula as a conjunction of disjunctive 
clauses of (possibly negated) individual variables. While 
CNF provides algorithmic advantages to most solvers, it 
suffers from two substantial drawbacks: 

1. It is difficult to generate CNF directly from a 
problem instance without intermediate translation. 

2. It obscures known higher-order relationships 
between constraints. 

While CNF is a normal form, it is not canonical. Previous 
work has shown that the choice of encoding can make a 
substantial difference in the performance of the solver [4]. 
Exacerbating the problem, we have demonstrated that the 
best known choice of encoding often varies with the choice 
of solver. These realities point to the existence of a 
significant gap separating the needs of people generating 
real-world constraint problem instances from the impressive 
research that has gone into optimizing SAT solvers. 

Salt closes this gap. Salt is a constraint logic language and 
translator for SAT applications that translates Salt input 
files into CNF files suitable for processing by a SAT solver. 
The Salt language provides a simple and intuitive syntax for 
representing propositional logic, arbitrary precision fixed 
point arithmetic, and set theoretic constraints, while the Salt 
translator provides a uniform, optimized way of translating 
those constraints into CNF. Through a set of command line 
arguments and translation parameters, Salt can be tuned to 
produce superior performance on a range of solvers.  
Figure 1 illustrates the variability one such parameter, 
capture threshold, induces on the minimum, maximum, and 
mean solution times for a suite of prime factorization SAT 
instances. 
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Figure 1: Effect of Capture Threshold on Solution Time 



The design of Salt is motivated by the well-understood 
relationship between applications, programming languages, 
compilers, and hardware. In that relationship, a 
programming language provides a common means of 
expression for a range of applications and the compiler 
serves as a platform for translating the programming 
language into hardware instructions. Strong compilers can 
optimize programming language code and possibly retarget 
the same source code to a range of hardware. With the Salt 
language, we have developed an application-independent 
syntax for expressing logical constraints. With the Salt 
translator, we have created a platform for analyzing those 
constraints at a higher level and choosing a representation 
tuned to the heuristics of the target solver. We have 
demonstrated that Salt is essential to achieving peak 
performance from an off-the-shelf SAT solver. 

Extending Satisfiability to Multiprocessors 
Most modern SAT solvers are based on the Davis-Putnam-
Loveland-Logemann (DPLL) algorithm [5]. At each step in 
the DPLL algorithm, the objective is to extend a partial 
assignment of the variables to include an additional variable 
assignment. Each new assignment initiates a sequence of 
additional assignments dictated by logical implication. That 
sequence may reveal a conflicting assignment, causing the 
search algorithm to backtrack. The process of discovering 
logical implications is known as Boolean constraint 
propagation (BCP). DPLL-based SAT solvers spend 80% 
or more of their time performing BCP [2], making BCP an 
ideal candidate for parallelization. 

Additionally, the size of real-world problems can be quite 
large; it is not atypical for a CNF encoding to require 
storage on the order of gigabytes. These massive storage 
requirements limit the applicability of standard SAT solvers 
to some real-world problem instances. 

 
Figure 2: Example Distribution of Threads for Alef Parallel 
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Alef’s parallel implementation is broken into three thread 
types: master, worker, and search. Each thread runs an 
autonomous message-driven algorithm. The master thread 
is in charge of distributing work to the search threads, 
coordinating load balancing, and detecting instances that 
are not satisfiable. Search threads are in charge of making 
decisions, coordinating BCP and conflict resolution, and 
ultimately finding a satisfying variable assignment. Worker 
threads perform BCP on behalf of the search and master 
threads, and optionally, perform distributed conflict 

resolution. Figure 2 illustrates a possible distribution of 
these threads over the nodes of a Cray XD1. 

This organization was partially motivated by the design of 
an application-specific processor that exploits data 
parallelism in BCP, which showed speedups between 20x 
and 60x [6]. While extremely low on-chip latencies allowed 
the processor’s designers to randomly distribute clauses 
across the chip, the higher message latencies of multi-
processor machines require an intelligent partitioning of the 
clauses. However, partitioning clauses can reduce available 
data parallelism, as each processor can only handle one 
clause from a partition at a time. Another parallel solver 
partitions clauses and distributes them across the nodes of a 
cluster [7]. While it can attempt larger SAT instances, its 
performance is lower than sequential solvers due to the 
combination of high message latency on the cluster and 
reduced available data parallelism.  

To increase available data parallelism, Alef runs multiple 
search threads, each working on a different area of the 
search space. Additionally, the message latency of the XD1 
is up to two orders of magnitude less than the latency of a 
cluster with Gigabit Ethernet. Given the low 
communication latency of the XD1 and Alef’s algorithmic 
improvements, we anticipate a significant performance 
improvement over sequential solvers in addition to the 
ability to attempt larger SAT instances. 

Conclusion 
With Salt and Alef, we are building an advanced tool chain 
that will enable more extensive application of Boolean 
satisfiability solving. Our tools make SAT techniques easier 
to apply and more effective to use on problems in formal 
verification, analysis of numerical precision for embedded 
pipelines, and cognitive reasoning. We are currently 
conducting experiments with a full-featured version of Salt 
and expect to have experimental results from Alef in the 
near future. 
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