
Salt & Alef: Unlocking the Power of Boolean Satisfiability
James R. Ezick, Samuel B. Luckenbill, Donald D. Nguyen, Peter Szilagyi, Richard A. Lethin

{ezick, sbl, nguyen, szilagyi, lethin}@reservoir.com
Reservoir Labs, Inc.

Introduction1

Solvers for the Boolean satisfiability problem (SAT) are an
enabling technology for a diverse set of applications
relevant to the HPEC community. These applications
include formal verification, analysis of numerical precision
for embedded pipelines, and cognitive reasoning. However,
solver performance, measured in terms of speed and
maximum problem size, is a limiting factor to the
application of SAT to real-world problems. We are
developing a constraint language, translation tool, and
parallel SAT solver to significantly mitigate the impact of
these limitations.

Salt is a universal language and translation tool for
constraint systems. With Salt, we can optimize the
representation of real-world constraint systems to the
characteristics of a target solver, thus realizing the solver’s
full potential. Alef is a parallel SAT solver that distributes
both the storage and computational requirements of a SAT
instance across multiple nodes. Our analysis shows that we
are likely to achieve a consistent performance improvement
over existing solvers in terms of speed and allowable
problem size. We expect to demonstrate the performance of
the complete pipeline running on a Cray XD1 [1] in the
near future. These advances are making it possible for us to
reexamine previously intractable verification, numerical
precision, and cognitive problems.

The Boolean Satisfiability Problem
Given a propositional logic formula, Boolean satisfiability
is the problem of finding an assignment to the variables of
the formula such that the formula evaluates to true.
Formulas for which such an assignment exists are
satisfiable. In the general case, finding a satisfying
assignment is an NP-complete problem. However, modern
solvers use a range of heuristics and optimizations based on
logical inference that allow them to solve some real-world
instances with more than one million variables [2][3].

In addition to the generality of the approach and the
existence of highly tuned solvers, SAT is an attractive
formulation for embedded pipeline analysis and cognitive
reasoning because of the one-to-one correspondence that
can be encoded between individual signals and individual
propositional variables. For embedded pipeline analysis,
this correspondence allows us to analyze the
implementation of computer arithmetic as opposed to a
mathematical abstraction. For cognitive problems,
individual variables concisely capture atomic facts that can
be assumed, learned, or refuted.

This work was produced with US Government support, under DARPA
contract W31P4Q-04-C-R257. The US Government has certain rights to
this work.

Closing the Programming Gap
Most solvers require that SAT problem instances be
specified in conjunctive normal form (CNF). CNF is a
representation of a formula as a conjunction of disjunctive
clauses of (possibly negated) individual variables. While
CNF provides algorithmic advantages to most solvers, it
suffers from two substantial drawbacks:

1. It is difficult to generate CNF directly from a
problem instance without intermediate translation.

2. It obscures known higher-order relationships
between constraints.

While CNF is a normal form, it is not canonical. Previous
work has shown that the choice of encoding can make a
substantial difference in the performance of the solver [4].
Exacerbating the problem, we have demonstrated that the
best known choice of encoding often varies with the choice
of solver. These realities point to the existence of a
significant gap separating the needs of people generating
real-world constraint problem instances from the impressive
research that has gone into optimizing SAT solvers.

Salt closes this gap. Salt is a constraint logic language and
translator for SAT applications that translates Salt input
files into CNF files suitable for processing by a SAT solver.
The Salt language provides a simple and intuitive syntax for
representing propositional logic, arbitrary precision fixed
point arithmetic, and set theoretic constraints, while the Salt
translator provides a uniform, optimized way of translating
those constraints into CNF. Through a set of command line
arguments and translation parameters, Salt can be tuned to
produce superior performance on a range of solvers.
Figure 1 illustrates the variability one such parameter,
capture threshold, induces on the minimum, maximum, and
mean solution times for a suite of prime factorization SAT
instances.

Prime Factorization

0

200

400

600

800

1000

1200

1400

1600

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Capture Threshold

Ti
m

e
(s

)

Figure 1: Effect of Capture Threshold on Solution Time

The design of Salt is motivated by the well-understood
relationship between applications, programming languages,
compilers, and hardware. In that relationship, a
programming language provides a common means of
expression for a range of applications and the compiler
serves as a platform for translating the programming
language into hardware instructions. Strong compilers can
optimize programming language code and possibly retarget
the same source code to a range of hardware. With the Salt
language, we have developed an application-independent
syntax for expressing logical constraints. With the Salt
translator, we have created a platform for analyzing those
constraints at a higher level and choosing a representation
tuned to the heuristics of the target solver. We have
demonstrated that Salt is essential to achieving peak
performance from an off-the-shelf SAT solver.

Extending Satisfiability to Multiprocessors
Most modern SAT solvers are based on the Davis-Putnam-
Loveland-Logemann (DPLL) algorithm [5]. At each step in
the DPLL algorithm, the objective is to extend a partial
assignment of the variables to include an additional variable
assignment. Each new assignment initiates a sequence of
additional assignments dictated by logical implication. That
sequence may reveal a conflicting assignment, causing the
search algorithm to backtrack. The process of discovering
logical implications is known as Boolean constraint
propagation (BCP). DPLL-based SAT solvers spend 80%
or more of their time performing BCP [2], making BCP an
ideal candidate for parallelization.

Additionally, the size of real-world problems can be quite
large; it is not atypical for a CNF encoding to require
storage on the order of gigabytes. These massive storage
requirements limit the applicability of standard SAT solvers
to some real-world problem instances.

Figure 2: Example Distribution of Threads for Alef Parallel

SAT Solver on HPC Hardware

Alef’s parallel implementation is broken into three thread
types: master, worker, and search. Each thread runs an
autonomous message-driven algorithm. The master thread
is in charge of distributing work to the search threads,
coordinating load balancing, and detecting instances that
are not satisfiable. Search threads are in charge of making
decisions, coordinating BCP and conflict resolution, and
ultimately finding a satisfying variable assignment. Worker
threads perform BCP on behalf of the search and master
threads, and optionally, perform distributed conflict

resolution. Figure 2 illustrates a possible distribution of
these threads over the nodes of a Cray XD1.

This organization was partially motivated by the design of
an application-specific processor that exploits data
parallelism in BCP, which showed speedups between 20x
and 60x [6]. While extremely low on-chip latencies allowed
the processor’s designers to randomly distribute clauses
across the chip, the higher message latencies of multi-
processor machines require an intelligent partitioning of the
clauses. However, partitioning clauses can reduce available
data parallelism, as each processor can only handle one
clause from a partition at a time. Another parallel solver
partitions clauses and distributes them across the nodes of a
cluster [7]. While it can attempt larger SAT instances, its
performance is lower than sequential solvers due to the
combination of high message latency on the cluster and
reduced available data parallelism.

To increase available data parallelism, Alef runs multiple
search threads, each working on a different area of the
search space. Additionally, the message latency of the XD1
is up to two orders of magnitude less than the latency of a
cluster with Gigabit Ethernet. Given the low
communication latency of the XD1 and Alef’s algorithmic
improvements, we anticipate a significant performance
improvement over sequential solvers in addition to the
ability to attempt larger SAT instances.

Conclusion
With Salt and Alef, we are building an advanced tool chain
that will enable more extensive application of Boolean
satisfiability solving. Our tools make SAT techniques easier
to apply and more effective to use on problems in formal
verification, analysis of numerical precision for embedded
pipelines, and cognitive reasoning. We are currently
conducting experiments with a full-featured version of Salt
and expect to have experimental results from Alef in the
near future.

References
 [1] Cray, Inc., “Cray XD1 Datasheet,” 2005, Available at:

http://www.cray.com/products/xd1/index.html.

 [2] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,”
DAC’01, Las Vegas, NV, June 2001.

 [3] “Boolean Satisfiability Research Group at Princeton,”
[Online Document], Apr 2006, Available at:
http://www.princeton.edu/~chaff/zchaff.html.

 [4] N. Een, A. Biere. “Effective Preprocessing in SAT through
Variable and Clause Elimination,” SAT’05, June 2005.

 [5] M Davis, G. Logemann, and D. Loveland. “A Machine
Program for Theorem Proving,” CACM, 5(7), 1962.

 [6] Y. Zhao, “Accelerating Boolean Satisfiability through
Application Specific Processing,” Ph.D. Thesis, Department
of Electrical Engineering, Princeton University, Oct. 2001.

 [7] M. Ganai, et al., “Efficient Distributed SAT and SAT-based
Distributed Bounded Model Checking,” CHARME’03, Oct.
2003.

