Successive Rank-Revealing Cholesky Factorizations on GPUs

Ty Fridrich Nikos P. Pitsianis Xiaobai Sun CS Dept., Duke Univ. HPEC-2006, 09/19-21/2006 MIT-LL

Problem Description: Successive Cholesky Factorizations

• A sequence of data matrices at input

$$A_k \in \mathbb{R}^{m \times n}, \quad k = 1, 2, \cdots$$

 A sequence of Cholesky factors at output

 To increase the rate of generating the Cholesky factors in space-time adaptive processing (STAP) systems

Successive Rank-Revealing Cholesky Factorizations

Two Basic Approaches for Cholesky Factors

Without Orthogonal Transforms

1. Matrix-matrix multiplication

$$M_k := A_k^{\mathsf{T}} A_k$$

2. Cholesky factorization

$$M_k = R_k^{\mathsf{T}} R_k$$

Via Orthogonal Transforms

1. QR factorization (Q-less)

$$A_k = Q_k \cdot R_k$$

Column-wise Reduction to Upper Triangular Form

Exploiting Relationship in Consecutive Data Matrices

Conventional Rank-1 Update Algorithm

New Algorithm for Successive Factorizations

 Concurrent adaptation to individual R_k, k=1:p, p>1

QR Factorization of the Central Block

Concurrent Completion of Individual Matrices

Matrix Expressions of Successive Factorizations

• Association of every p matrices

$$A_1, A_2, \cdots, A_p, \quad 2 \le p \le \sqrt{m}$$

Common factorization

$$A_c = A_1(p/2: m - p/2, 1:n) = Q_c \cdot Rc$$

Concurrent adaptation

$$A_{k} = S_{k} \begin{pmatrix} I_{p} & 0 \\ 0 & Q_{c} \end{pmatrix} \begin{pmatrix} A_{k}(m:-1:m-k,1:n) \\ A_{1}(k:p/2,1:n) \\ R_{c} \end{pmatrix}$$

$$= Q_{k}R_{k} \qquad \uparrow$$
Individual permutation Common Orthogonal Factor Trapezoidal form with individual top

Pivoting Strategies in the Common Block

Original A

R without pivoting

R2 with pivoting

version 2

Norm-2 calculation at every step

11

10

20

30

40

50

60

10

20

Pivoting Strategies in Individual Adaptation

 Algebraically, if the r columns are linearly independent in Ac, they remain so in each and every Ak, k = 1, 2, ..., p

 Numerically, the gap between the rank and null spaces of Rc can be carried over to Rk if

$$\max_{j} \|T_{k,1}(:,j)\| - \min_{j} \|T_{k,2}(:,j)\| < gap(R_c)$$

If the condition is satisfied uniformly by all Rk, then no further pivoting in the stage of individual adaptation

Pivoting Strategies in Adaptation (cont'd)

- The uniform condition is most likely met because
 - The associated matrices are highly correlated due to their temporal locality indicated by p
 - The individual difference is in at most **p** rows, $p \leq \sqrt{m}$
- The dynamic change beyond the temporal locality can be captured by the next association block

Efficient Pivoting Strategies (cont'd)

• When the dynamic change is significant within a block, use efficient backward pair-wise swapping to shift the gap individually and concurrently

Successive QR and RR-QR on GPUs

- Matrix layout
- Reduction of redundancy in both computation and memory
- Factorization of the common block
- Concurrent completion of individual factorizations
- Performance

Successive Rank-Revealing Cholesky Factorizations on GPUs

GPU Implementation : direct matrix-texture mapping

- a texture for each matrix or sub-matrix
 - the source for p successive matrices
 - intermediate matrices
 - the output : p rank-revealing Rk
- bypass the rendering to a screen
- read-only or write only operations, and not simultaneously

GPU Implementation : common block factorization

Strategy for concurrent adaptation

- Single copy of the shared factor R_c

 minimize spatial redundancy
- 2. Subject to memory constraint :
 - q Cholesky factors at a time, q <= p
- 3. Stack un-common data blocks
 - one from each data matrix $A_{k'}$, k=1:q
 - enhance data locality
- 4. Single instruction multiple data : parallelization
 - Read a single row of R_c at each step from top
 - Complete a corresponding row for every R_k , k=1:q

GPU Implementation : pivoting

Norm-2 Calculation

- at every reduction step
 - m n² n³/2 extra flops
 - additional pipeline operations
- at the initial step only and followed by 'down-dating' in subsequent steps
 - reduce extra flops to
 2 mn + n²
 - with numerical threshold for severe cancellations

Locating Pivot Columns

- arg max operation
- index mapping vector

Column Permutation

- implicit (in place)
 - extra cost in indexing
- explicit
 - extra cost in data movement
- interface with triangular system solver

GPU Implementation : concurrent individual adaptation

The output Cholesky factors R_k , k=1:q, q=16, are produced simultaneously, row by row, by adapting the common R to individual un-common blocks, which are stacked together

Experiments. Development Techniques & Results

 GPU architecture specifics Hardware NVIDIA GeForce 7900 GT Software Cg, OpenGL (GLUT, GLEW) Single-precision floating-point arithmetic 	 From MATLAB to GPUs Algorithm prototyping Simulation of GPU computing Debugging Numerical comparison
 Parallel Computation Householder-based orthogonal transforms Separation of common block factorization and individual adaptation Rank-revealing in the common block factorization 	 Application specifics Matrix Size n =128 m = 384 512 640 Bloc size: p = 24 Test data Numerically full rank Numerically 10% rank deficient

Comparison in Latency and Memory Usage

m = 512 n = 128 p = 23	Latency Absolute (ms)	Latency Relative	Memory (m*n)
Plain Q-less QR	31.2	1	р
GAXPY*	30.4	0.99	
RR-QR-V1	60.0	1.92	р
RR-QR-V2	43.2	1.38	р
Successive-RR-QR	5.53	0.18	2.0

* The GAXPY performance is based on the GPUBENCH code with unrolling parameter 6

Conclusion

• The new adaptation algorithm is

- efficient in terms of flops via exploiting the redundancy
- highly parallelizable via removing unnecessary dependency
- It can be used for
 - successive Cholesky factorizations
 - successive QR factorizations
 - with or without pivoting
 - with or without accumulating the Q factors
- The concurrency can be exploited in different parallel fashions
- The use of other rank-revealing schemes are under investigation

 The factorizations using Givens rotations are implemented by D. Braunreiter's group at SAIC.

Acknowledgements

This work is in part supported by DARPA-MTO. We thank also Jeremy D. Furtek at SAIC for his helpful comments on performance tuning.