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Successive Rank-Revealing Cholesky Factorizations on GPUs

Problem Description: Successive Cholesky Factorizations

• A sequence of data matrices at 
input

• A sequence of Cholesky factors at 
output

• To increase the rate of generating 
the Cholesky factors in space-time 
adaptive processing (STAP) systems
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Successive Rank-Revealing Cholesky Factorizations
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Successive Rank-Revealing Cholesky Factorizations on GPUs

Two Basic Approaches for Cholesky Factors

Without Orthogonal Transforms

1. Matrix-matrix multiplication

2. Cholesky factorization

Via Orthogonal Transforms 

1. QR factorization (Q-less) 

Column-wise Reduction to Upper Triangular Form
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Exploiting  Relationship in Consecutive Data Matrices

Ak

Ak+1SAk

Departing row

S: circulant up-shift 

Last row arriving

First row departing

• data redundancy ratio m-1 to 1
• Ak+1 is a rank-1 update of rotated Ak
• circulant shift is an orthogonal transform 
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Conventional Rank-1 Update Algorithm 

2. sequential bulge chasing for each update

1. need accumulation of qk 3. sequential from one update to the next 

SQk is orthogonal 
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• QR factorization of the common 
submatrix Ac among p>1 matrices

• Without complete data of A2

A1

A5

New Algorithm for Successive Factorizations

• Concurrent adaptation to 
individual Rk, k=1:p, p>1

• without delay of R1

• without bulge chasing in Rk
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QR Factorization of the Central Block
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Concurrent Completion of Individual Matrices 
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Matrix Expressions of Successive Factorizations

• Association of every p matrices 

• Common factorization

• Concurrent adaptation

Common 
Orthogonal Factor

Trapezoidal form 
with individual top

Individual 
permutation
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Pivoting Strategies in the Common Block
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• Algebraically, if the r columns are linearly independent in 
Ac, they remain so in each and every Ak,    k = 1, 2, …, p

• Numerically, the gap between the rank and null spaces of 
Rc can be carried over to Rk if 

If the condition is satisfied uniformly by all Rk,  then no 
further pivoting in the stage of individual adaptation 

Pivoting Strategies in Individual Adaptation
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• The uniform condition is most likely met because 

– The associated matrices are highly correlated due to their 
temporal locality indicated by p

– The individual difference is in at most p rows,  

• The dynamic change beyond the temporal locality can be 
captured by the next association block 

Pivoting Strategies in Adaptation (cont’d) 
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• When the dynamic change is significant within a block, use 
efficient backward pair-wise swapping to shift the gap 
individually and concurrently 

Efficient Pivoting Strategies (cont’d) 
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• Matrix layout 

• Reduction of redundancy in both computation and memory 

• Factorization of the common block 

• Concurrent completion of individual factorizations 

• Performance

Successive QR and RR-QR on GPUs
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GPU Implementation : direct matrix-texture mapping 

FBO 1

Texture 2 

Texture 3 

Texture 4 

• a texture for each matrix or sub-matrix 
• the source for p successive matrices 
• intermediate matrices 
• the output : p rank-revealing  Rk

• bypass the rendering to a screen 
• read-only or write only operations, 
and not simultaneously

Texture 22
Texture  21

Texture  23 

Texture 7 
Texture 6 Texture 1 

Texture 5
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GPU Implementation : common block factorization

Matrix Layout for common factorization Strategy for concurrent adaptation

1. Single copy of the shared factor Rc

– minimize spatial redundancy

2. Subject to memory constraint :  
– q Cholesky factors at a time, q <= p  

3. Stack un-common data blocks
– one from each data matrix Ak, k=1:q  
– enhance data locality

4. Single instruction multiple data : 
parallelization
– Read a single row of Rc at each step 

from top 
– Complete a corresponding row for 

every Rk, k=1:q 

A(1:4:m,1:n)

A(2:4:m,1:n)
A(3:4:m,1:n)

A(4:4:m,1:n)
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GPU Implementation : pivoting

Norm-2 Calculation 

• at every reduction step

– m n2 – n3/2 extra flops
– additional pipeline 

operations

• at the initial step only and 
followed by ‘down-dating’ in 
subsequent steps 

– reduce extra flops to                
2 mn + n2

– with numerical threshold 
for severe cancellations

Column Permutation

• implicit           (in place) 
– extra cost in indexing 

• explicit
– extra cost in data movement 

• interface with triangular system 
solver

Locating  Pivot Columns

• arg max operation 
• index mapping  vector   
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GPU Implementation : concurrent individual adaptation

The output Cholesky factors Rk, k=1:q, q=16, are produced 
simultaneously, row by row,  by adapting the common R to 
individual un-common blocks, which are stacked together
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Experiments. Development Techniques & Results

GPU architecture specifics 
• Hardware

– NVIDIA GeForce 7900 GT  
• Software

– Cg, OpenGL (GLUT, GLEW)  
• Single-precision floating-point 

arithmetic

Parallel Computation 
• Householder-based orthogonal 

transforms
• Separation of common block 

factorization and individual 
adaptation  

• Rank-revealing in the common 
block factorization

From MATLAB to GPUs

• Algorithm prototyping 
• Simulation of GPU computing 
• Debugging  
• Numerical comparison

Application specifics 

• Matrix Size 
n  =128,   m = 384, 512, 640 

• Bloc size: p = 24 
• Test data 

Numerically full rank 
Numerically 10% rank 

deficient 
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Comparison in Latency and Memory Usage

p1.3843.2RR-QR-V2

p1.9260.0RR-QR-V1

2.00.185.53Successive-RR-QR

0.9930.4GAXPY*

p1 31.2 Plain Q-less QR

Memory

(m*n) 

Latency 
Relative

Latency
Absolute 

(ms)

m = 512
n  = 128 
p  =   23 

* The GAXPY performance is based on  the GPUBENCH code with unrolling parameter 6 
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Conclusion

• The new adaptation algorithm is 
– efficient in terms of flops via exploiting 

the redundancy
– highly parallelizable via removing 

unnecessary dependency 

• It can be used for  
– successive Cholesky factorizations
– successive QR factorizations 
– with or without pivoting 
– with or without  accumulating the Q 

factors

• The concurrency can be exploited in 
different parallel fashions 

• The use of other rank-revealing 
schemes are under investigation 

• The factorizations using 
Givens rotations are 
implemented by D. 
Braunreiter’s group at SAIC. 
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