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Successive Rank-Revealing Cholesky Factorizations on GPUs

Problem Description: Successive Cholesky Factorizations

e A sequence of data matrices at e A sequence of Cholesky factors at
input output
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Successive Rank-Revealing Cholesky Factorizations on GPUs

Successive Rank-Revealing Cholesky Factorizations

Original A R without pivoting R1 with pivoting
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Successive Rank-Revealing Cholesky Factorizations on GPUs

Two Basic Approaches for Cholesky Factors

Without Orthogonal Transforms Via Orthogonal Transforms

1. Matrix-matrix multiplication 1. OR factorization (Q-less)

My, = Al Ay A = Qg - Ry

2. Cholesky factorization

M;, = R; Ry

Column-wise Reduction to Upper Triangular Form

HPEC-2006, MIT-LL Duke €S| 09/19/2006



Successive Rank-Revealing Cholesky Factorizations on GPUs

Exploiting Relationship in Consecutive Data Matrices

Apy41 = fAk + emUpr1 — fi )

S: circulant up-shift <

T« Firstrow departing fr, =e1Ag

Ak 1 =emApt1

ei € R™, €;(j) = 6(i,7)

« data redundancy ratio m-1 to 1
* A, IS arank-1 update of rotated A,
e circulant shift is an orthogonal transform
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Successive Rank-Revealing Cholesky Factorizations on GPUs

Conventional Rank-1 Update Algorithm

Ak—l—l — SAk +em - dT, d k—l—l fk 3
= SQrL(Ri + q; - dg) SQ, is orthogonal
R +ay-d) = Upy1Rpq1

N

= -

2. sequential bulge chasing for each update

1. need accumulation of q,
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3. sequential from one update to the next
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Successive Rank-Revealing

Cholesky Factorizations on GPUs

New Algorithm for Successive Factorizations

QR factorization of the common

submatrix AC among p>1 matrices
A
1

As

Without complete data of A,

Concurrent adaptation to
individual R, k=1:p, p>1

without delay of R;
without bulge chasing in R,
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Successive Rank-Revealing Cholesky Factorizations on GPUs

QR Factorization of the Central Block

A bloc of 16 matrices Cholesky factor of the common
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Successive Rank-Revealing Cholesky Factorizations on GPUs

Concurrent Completion of Individual Matrices

Mean Squares Error, (AL * Ak - th( * Rk)
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_ Successive Rank-Revealing Cholesky Factorizations on GPUs

Matrix Expressions of Successive Factorizations

e Association of every p matrices
A17A27'°'7Ap7 QSPS vV m
e Common factorization

Ac=A1(p/2:m—p/2,1:n) = Q¢ Rc

e Concurrent adaptation

0 Ar(m:—=1:m—k,1:n)
A, = S| F A1(k :p/2,1:n)
0 Qc
R
= QiR ‘ T
Individual Common Tr_ap_ezqi(jal form
permutation Orthogonal Factor with individual top
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Successive Rank-Revealing Cholesky Factorizations on GPUs

Pivoting Strategies in the Common Block

Original A R without pivoting R1 with pivoting

Norm-2
calculation at
every step

10 20 30 10 20 30

version 1

R without pivoting R2 with pivoting

Initial norm-2
calculation
followed by norm
down-dating

10 20 30
version 2
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_ Successive Rank-Revealing Cholesky Factorizations on GPUs

Pivoting Strategies in Individual Adaptation

e Algebraically, if the r columns are linearly independent in
Ac, they remain so in each and every Ak, k=1,2,..,p

e Numerically, the gap between the rank and null spaces of
Rc can be carried over to RK if

mjax ||Tk,1(7])|| _ mjln ||Tk,2(7])|| < gap(RC)

If the condition is satisfied uniformly by all Rk, then no
further pivoting in the stage of individual adaptation

HPEC-2006, MIT-LL Duke €S| 09/19/2006



_ Successive Rank-Revealing Cholesky Factorizations on GPUs
Pivoting Strategies in Adaptation (cont’d)

e The uniform condition is most likely met because

— The associated matrices are highly correlated due to their
temporal locality indicated by p

— The individual difference is in at most p rows, P S A/ T

e The dynamic change beyond the temporal locality can be
captured by the next association block
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Efficient Pivoting Strategies (cont’d)

Successive Rank-Revealing Cholesky Factorizations on GPUs

e When the dynamic change is significant within a block, use

efficient backward pair-wise swapping to shift the gap

iIndividually and concurrently
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_ Successive Rank-Revealing Cholesky Factorizations on GPUs

Successive QR and RR-QR on GPUs

e Matrix layout
e Reduction of redundancy in both computation and memory
e Factorization of the common block

e Concurrent completion of individual factorizations

e Performance
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Successive Rank-Revealing Cholesky Factorizations on GPUs

GPU Implementation : direct matrix-texture mapping

EBO

Texture 1

Texture 2

Texture 3

Texture 4
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e a texture for each matrix or sub-matrix

» the source for p successive matrices

 intermediate matrices
» the output : p rank-revealing Rk
 bypass the rendering to a screen
 read-only or write only operations,
and not simultaneously
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Successive Rank-Revealing

Cholesky Factorizations on GPUs

GPU Implementation : common block factorization

Matrix Layout for common factorization

Strategy for concurrent adaptation

1. Single copy of the shared factor R,

— minimize spatial redundancy

2. Subject to memory constraint :
— ¢ Cholesky factors at a time, g <= p

3. Stack un-common data blocks

— one from each data matrix A, k=1:q
— enhance data locality

4. Single instruction multiple data :
parallelization
— Read a single row of R at each step
from top

— Complete a corresponding row for
every Ry, k=1:q
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Successive Rank-Revealing Cholesky Factorizations on GPUs

GPU Implementation :

pivoting

Norm-2 Calculation
e at every reduction step

— mn2—-—n3/2 extra flops
— additional pipeline
operations

e at the initial step only and
followed by ‘down-dating’ in
subsequent steps

— reduce extra flops to
2 mn + n?

— with numerical threshold
for severe cancellations

Locating Pivot Columns

e arg max operation
e index mapping vector
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Column Permutation

e implicit (in place)
— extra cost in indexing

e explicit
— extra cost in data movement

e interface with triangular system
solver
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Successive Rank-Revealing Cholesky Factorizations on GPUs

GPU Implementation : concurrent individual adaptation

16 simultaneous QR

LHEE““EHH%:§IDUt

R2out

{

\R]ﬁgut

The output Cholesky factors R,, k=1:q, q=16, are produced
simultaneously, row by row, by adapting the common R to
individual un-common blocks, which are stacked together
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Successive Rank-Revealing

Cholesky Factorizations on GPUs

Experiments. Development Techniques & Results

GPU architecture specifics
 Hardware
— NVIDIA GeForce 7900 GT
o Software
— Cg, OpenGL (GLUT, GLEW)
« Single-precision floating-point
arithmetic

From MATLAB to GPUs

. Algorithm prototyping

. Simulation of GPU computing
. Debugging

. Numerical comparison

Parallel Computation

 Householder-based orthogonal
transforms

» Separation of common block
factorization and individual
adaptation

 Rank-revealing in the common
block factorization

Application specifics

e Matrix Size
n =128, m =384, 512, 640
 Blocsize:p=24
e Test data
Numerically full rank
Numerically 10% rank
deficient
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Successive Rank-Revealing Cholesky Factorizations on GPUs

Comparison in Latency and Memory Usage

m = 512 Latency Latency Memory

n =128 Absolute Relative

p = 23 (ms) (m*n)
Plain Q-less QR 31.2 1 P
GAXPY* 30.4 0.99
RR-QR-V1 60.0 1.92 P
RR-QR-V2 43.2 1.38 p
Successive-RR-0QR 5.53 0.18 2.0

* The GAXPY performance is based on the GPUBENCH code with unrolling parameter 6
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Successive Rank-Revealing Cholesky Factorizations on GPUs

e The new adaptation algorithm is e The factorizations using
— efficient in terms of flops via exploiting Givens rotations are

h )
the redundancy |mp|emented by D.

— highly parallelizable via removing : ,
unnecessary dependency Braunreiter’'s group at SAIC.

e It can be used for
— successive Cholesky factorizations - Acknowledgements
— successive QR factorizations
— with or without pivoting
— with or without accumulating the Q

factors This work is in part supported
by DARPA-MTO. We thank
= The concurrency can be exploited in also Jeremy D. Furtek at SAIC
different parallel fashions for his helpful comments on

performance tuning.

e The use of other rank-revealing
schemes are under investigation
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