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Introduction1

We present an algorithm and its GPU implementation for 
fast generation of rank-revealing Cholesky factors {Rk} at 
output in response to a sequence of data matrices {Ak} at 
input. The Cholesky factors are subsequently used for 
calculating adaptive weight vectors as control feedback in 
space-time adaptive processing (STAP) and sensing 
systems [3].  The size of the input data matrices is m× n, 
where n is the number of sensors, and m is the number of 
samples or snapshots. Usually, m = k·n with k between 3 
and 5.  In [1, 4] we introduced an algorithm for accelerating 
successive Cholesky factorizations and a GPU 
implementation. The algorithm exploits the redundancy in 
the data matrices with a new, un-conventional approach. It 
is advantageous in comparison to conventional adaptation 
algorithms in arithmetic operation complexity, memory 
space and the concurrency for parallel implementation 
within each factorization and between consecutive 
factorizations. Here, the algorithm is extended to the case 
where the resulting Cholesky factors have rank-revealing 
structures.  It appears the first effective and efficient 
algorithm for such a computational task. The other 
approaches either ignore the data redundancy at the cost of 
more arithmetic operations or tackle the redundancy with 
highly sequential means. The GPU implementation 
underscores the algorithmic concurrency and represents an 
additional mapping from architecture-independent 
concurrency to architecture-specific parallel computation.  

 

The algorithm 
The algorithm exploits the data redundancy among 
successive matrices.  For each k≥1, the matrix Ak+1 can be 
viewed as the forward shift of Ak with the last row 
containing the most recent data. This relationship may be 
formally described as follows: Ak+1 = S Ak + em (dnew – a1)T, 
where S is the circulant up-shifting matrix, em=(0,…,0,1)T 
in Rm, dnew is the new data to be placed as the last row of 
Ak+1, and a1 is the first row of Ak to be discarded.  A simple 
way is to ignore the relationship and apply a rank-revealing 
factorization algorithm to each and every matrix [2]. 
Without the requirement on rank-revealing, one may apply 
a typical conventional rank-1 update algorithm [2], which is 
highly sequential within each update and between 
successive updates. Such kind of rank-1 update algorithm 
can not be applied easily and efficiently to the case with 
rank-revealing requirement.  In contrast, the concurrent 
adaptation approach we introduced in [1, 4] exploits the 
                                                 

QR factorization can be. The dimension of the null space is 
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large portion in each matrix that is common with its 
neighboring matrices, not limited to one neighbor. 
Moreover, it can accommodate the rank-revealing treatment 
effectively and efficiently. 

 
Figure 1: Parallel adaptation 

The algorithm treats every p matrices as a bloc, where p is 
the bloc size, 1<p<m. Denote p consecutive neighbor 
matrices by A1, A2, …, Ap. There are m-p+1 rows common 
to all the matrices.  These rows can be pre-determined as a 
sub-matrix of the first matrix, Ac=A1(p:m,1:n), without the 
knowledge of the new data in the subsequent matrices. Here 
we use MATLAB notation for matrix partition and 
composition. There are two basic steps for factorizing the 
matrices in each bloc. First, apply a rank-revealing 
factorization procedure to Ac and obtain a rank-revealing 
Cholesky factor Rc and an associated permutation matrix Pc. 
Namely, AcPc=QcRc, for some matrix Qc with orthonormal 
columns, which is explicitly formed, where Rc may be seen 
as a 2-by-2 block triangular matrix, with the leading block 
Rc(1:r,1:r) corresponding to the r-dimensional numerical 
column space of Ac, and the tailing block to the numerical 
null space. 

In the second step, we obtain the rank-revealing factors Rk, 
k=1:p, by adapting the common factors of Ac to each and 
every individual matrix in the bloc. Specifically, the rank-
revealing Cholesky factor R1, of A1, can be obtained 
quickly by completing the factorization of the matrix [A1 
(1:p-1,1:n) Pc; Rc]P1=U1R1, where U1 has orthonormal 
columns. One shall notice that the permutation matrix P1 
does not necessarily involve the first r columns of the 
trapezoid matrix [A1 (1:p-1,1:n) Pc; Rc], which are already 
numerically linearly independent. In other words, the 
numerical null space of the trapezoid matrix is in the 
subspace spanned by the trailing columns. Thus, the 
adaptation in the first r columns can be done as efficiently 
as that without rank-revealing treatment, i.e., as any Q-less 
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usually small in comparison to r, the dimension of the rank 
space. The first step has narrowed the search of the gap 
between the null and rank spaces to the null space 
corresponding to the trailing block of Rc.  The computation 
of the first Cholesky factor is not compromised in accuracy 
and arithmetic complexity, nor delayed temporally.  

Similarly, the next Cholesky factor R  is obtained fr2
semi-processed matrix [A1(2:p-1,1:n) Pc; A2(m,1:n) Pc, Rc]. 
This implies a significant reduction in arithmetic operations 
than that by re-starting the factorization process at A2.  In 
addition, the computation of R2 can be started as soon as the 
new data A2(m,1:n) is available, with no need of waiting for 
the first factor to complete.  In general, Rk is obtained from 
matrix [Ak(m:-1:m-k+2,1:n) Pc; A1(k:p-1,1:n) Pc, Rc]. The 
adaptation of Rc to Rk can start no later than the data in the 
last row of Ak is made available.  In terms of arithmetic 
operation complexity, the optimal size of the common 
block is determined by p= m  approximately.  In this 
case, the number of arithmetic operations per factorization 
is reduced to γ m n2 with a modest constant γ. The 

memory space can be restricted to (m+ m )(n+3), with at 
most 2m memory units for the informat  of the current 
orthogonal transformation and m memory units for the 
permutations. Depending on detailed implementation 
arrangement, the data redundancy may be further exploited 
in the adaptation step as well between p/2 neighbors.  
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The new algorithm
adaptive factorization to nearly the same level as that for 
QR factorization, better than that for rank-revealing QR 
factorization, when the null space is of low dimension.  It 
introduces also the concurrency between successive 
factorizations. Similar to the standard QR factorization, the 
successive Cholesky factorizations, as described above, use 
two elementary orthogonal transforms, Givens rotations and 
Householder reflections.  These may be viewed as the two 
extremes in the granularity of employing orthogonal 
transformations. Moreover, for each version of the 
successive factorization algorithm, a GPU implementation 
may differ from one to another in data layout, data partition, 
operation partition and operation scheduling. 

Consider first the computation of every $p
Cholesky factors with Givens rotations only. There are 
many different ways to order Givens rotations for each 
factorization. But many orderings suitable for Cholesky 
factorizations are not suitable for rank-revealing Cholesky 
factorizations.  The computation of the common Cholesky 
factor $R_c$ amounts to different orderings in the Givens 
rotations for each individual matrix. This common 
factorization step saves $p-1$ similar factorizations.  
Consider next the factorization with Householder 
reflections.  The computation of the common factor $R_c$ 
entails an additional partition in the size of the Householder 
transformations for each individual matrix, in comparison 
to the very basic QR factorization using Householder 
reflections~\cite{GvanL:1989}. The partition location shifts 

from one matrix to the next. For R1, the additional partition 
requires few more arithmetic operations than that with the 
basic Household-QR version. However, it saves p-1 
factorizations over the same sub-matrix in the next p-1 
matrices.  

With any sel
transforms, the computations in adapting Rc to $p$ 
consecutive Cholesky factors are concurrent when all the 
data are available. In other words, the adaptation step does 
not impose any additional sequential dependence between 
successive factorizations as a conventional update 
algorithm does.  Within each adaptive factorization, the 
parallelism is almost the same as any QR factorization 
without rank revealing.  

In addition to the 
implementation of the algorithm must also respect the 
availability, capacity and constrains on a specific 
architecture system, including both hardware and software 
components. We demonstrate with a particular 
implementation of the algorithm for successive Cholesky 
factorizations using Householder reflections and employing 
GPU-friendly parallelization techniques.  We present a 
graphical description of a parallel implementation of the 
adaptation step, with special consideration to the present 
and near-future GPU architectures.  In particular, we keep 
the spatial redundancy in the parallel adaptation step as low 
as possible. This is to increase the degree of parallelism 
within a given memory space, increase the locality of 
memory access, and reduce the data movement between 
memory and cache.  The counterpart version using Givens 
rotations is under development. 
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