
Successive Rank-Revealing Cholesky Factorizations on GPUs
Ty Fridrich, Nikos Pitsianis and Xiaobai Sun

Department of Computer Science, Duke University, Durham, NC 27708
{Ty,Nikos,Xiaobai}@CS.Duke.edu

Introduction1

We present an algorithm and its GPU implementation for
fast generation of rank-revealing Cholesky factors {Rk} at
output in response to a sequence of data matrices {Ak} at
input. The Cholesky factors are subsequently used for
calculating adaptive weight vectors as control feedback in
space-time adaptive processing (STAP) and sensing
systems [3]. The size of the input data matrices is m× n,
where n is the number of sensors, and m is the number of
samples or snapshots. Usually, m = k·n with k between 3
and 5. In [1, 4] we introduced an algorithm for accelerating
successive Cholesky factorizations and a GPU
implementation. The algorithm exploits the redundancy in
the data matrices with a new, un-conventional approach. It
is advantageous in comparison to conventional adaptation
algorithms in arithmetic operation complexity, memory
space and the concurrency for parallel implementation
within each factorization and between consecutive
factorizations. Here, the algorithm is extended to the case
where the resulting Cholesky factors have rank-revealing
structures. It appears the first effective and efficient
algorithm for such a computational task. The other
approaches either ignore the data redundancy at the cost of
more arithmetic operations or tackle the redundancy with
highly sequential means. The GPU implementation
underscores the algorithmic concurrency and represents an
additional mapping from architecture-independent
concurrency to architecture-specific parallel computation.

The algorithm
The algorithm exploits the data redundancy among
successive matrices. For each k≥1, the matrix Ak+1 can be
viewed as the forward shift of Ak with the last row
containing the most recent data. This relationship may be
formally described as follows: Ak+1 = S Ak + em (dnew – a1)T,
where S is the circulant up-shifting matrix, em=(0,…,0,1)T
in Rm, dnew is the new data to be placed as the last row of
Ak+1, and a1 is the first row of Ak to be discarded. A simple
way is to ignore the relationship and apply a rank-revealing
factorization algorithm to each and every matrix [2].
Without the requirement on rank-revealing, one may apply
a typical conventional rank-1 update algorithm [2], which is
highly sequential within each update and between
successive updates. Such kind of rank-1 update algorithm
can not be applied easily and efficiently to the case with
rank-revealing requirement. In contrast, the concurrent
adaptation approach we introduced in [1, 4] exploits the

QR factorization can be. The dimension of the null space is

Acknowledgments. This project is supported in part by the MTO program
of DARPA.

large portion in each matrix that is common with its
neighboring matrices, not limited to one neighbor.
Moreover, it can accommodate the rank-revealing treatment
effectively and efficiently.

Figure 1: Parallel adaptation

The algorithm treats every p matrices as a bloc, where p is
the bloc size, 1<p<m. Denote p consecutive neighbor
matrices by A1, A2, …, Ap. There are m-p+1 rows common
to all the matrices. These rows can be pre-determined as a
sub-matrix of the first matrix, Ac=A1(p:m,1:n), without the
knowledge of the new data in the subsequent matrices. Here
we use MATLAB notation for matrix partition and
composition. There are two basic steps for factorizing the
matrices in each bloc. First, apply a rank-revealing
factorization procedure to Ac and obtain a rank-revealing
Cholesky factor Rc and an associated permutation matrix Pc.
Namely, AcPc=QcRc, for some matrix Qc with orthonormal
columns, which is explicitly formed, where Rc may be seen
as a 2-by-2 block triangular matrix, with the leading block
Rc(1:r,1:r) corresponding to the r-dimensional numerical
column space of Ac, and the tailing block to the numerical
null space.

In the second step, we obtain the rank-revealing factors Rk,
k=1:p, by adapting the common factors of Ac to each and
every individual matrix in the bloc. Specifically, the rank-
revealing Cholesky factor R1, of A1, can be obtained
quickly by completing the factorization of the matrix [A1
(1:p-1,1:n) Pc; Rc]P1=U1R1, where U1 has orthonormal
columns. One shall notice that the permutation matrix P1
does not necessarily involve the first r columns of the
trapezoid matrix [A1 (1:p-1,1:n) Pc; Rc], which are already
numerically linearly independent. In other words, the
numerical null space of the trapezoid matrix is in the
subspace spanned by the trailing columns. Thus, the
adaptation in the first r columns can be done as efficiently
as that without rank-revealing treatment, i.e., as any Q-less

om the

usually small in comparison to r, the dimension of the rank
space. The first step has narrowed the search of the gap
between the null and rank spaces to the null space
corresponding to the trailing block of Rc. The computation
of the first Cholesky factor is not compromised in accuracy
and arithmetic complexity, nor delayed temporally.

Similarly, the next Cholesky factor R is obtained fr2
semi-processed matrix [A1(2:p-1,1:n) Pc; A2(m,1:n) Pc, Rc].
This implies a significant reduction in arithmetic operations
than that by re-starting the factorization process at A2. In
addition, the computation of R2 can be started as soon as the
new data A2(m,1:n) is available, with no need of waiting for
the first factor to complete. In general, Rk is obtained from
matrix [Ak(m:-1:m-k+2,1:n) Pc; A1(k:p-1,1:n) Pc, Rc]. The
adaptation of Rc to Rk can start no later than the data in the
last row of Ak is made available. In terms of arithmetic
operation complexity, the optimal size of the common
block is determined by p= m approximately. In this
case, the number of arithmetic operations per factorization
is reduced to γ m n2 with a modest constant γ. The

memory space can be restricted to (m+ m)(n+3), with at
most 2m memory units for the informat of the current
orthogonal transformation and m memory units for the
permutations. Depending on detailed implementation
arrangement, the data redundancy may be further exploited
in the adaptation step as well between p/2 neighbors.

Parallelization

ion

 introduces the concurrency in each

$ consecutive

ection or combination of the orthogonal

ordering in data arrival, an

, N. P. Pitsianis, and X. Sun, “A GPU

[2] .

s.

[4] y factor sequence

The new algorithm
adaptive factorization to nearly the same level as that for
QR factorization, better than that for rank-revealing QR
factorization, when the null space is of low dimension. It
introduces also the concurrency between successive
factorizations. Similar to the standard QR factorization, the
successive Cholesky factorizations, as described above, use
two elementary orthogonal transforms, Givens rotations and
Householder reflections. These may be viewed as the two
extremes in the granularity of employing orthogonal
transformations. Moreover, for each version of the
successive factorization algorithm, a GPU implementation
may differ from one to another in data layout, data partition,
operation partition and operation scheduling.

Consider first the computation of every $p
Cholesky factors with Givens rotations only. There are
many different ways to order Givens rotations for each
factorization. But many orderings suitable for Cholesky
factorizations are not suitable for rank-revealing Cholesky
factorizations. The computation of the common Cholesky
factor R_c amounts to different orderings in the Givens
rotations for each individual matrix. This common
factorization step saves $p-1$ similar factorizations.
Consider next the factorization with Householder
reflections. The computation of the common factor R_c
entails an additional partition in the size of the Householder
transformations for each individual matrix, in comparison
to the very basic QR factorization using Householder
reflections~\cite{GvanL:1989}. The partition location shifts

from one matrix to the next. For R1, the additional partition
requires few more arithmetic operations than that with the
basic Household-QR version. However, it saves p-1
factorizations over the same sub-matrix in the next p-1
matrices.

With any sel
transforms, the computations in adapting Rc to p
consecutive Cholesky factors are concurrent when all the
data are available. In other words, the adaptation step does
not impose any additional sequential dependence between
successive factorizations as a conventional update
algorithm does. Within each adaptive factorization, the
parallelism is almost the same as any QR factorization
without rank revealing.

In addition to the
implementation of the algorithm must also respect the
availability, capacity and constrains on a specific
architecture system, including both hardware and software
components. We demonstrate with a particular
implementation of the algorithm for successive Cholesky
factorizations using Householder reflections and employing
GPU-friendly parallelization techniques. We present a
graphical description of a parallel implementation of the
adaptation step, with special consideration to the present
and near-future GPU architectures. In particular, we keep
the spatial redundancy in the parallel adaptation step as low
as possible. This is to increase the degree of parallelism
within a given memory space, increase the locality of
memory access, and reduce the data movement between
memory and cache. The counterpart version using Givens
rotations is under development.

References
[1] T. Fridrich

implementation of successive Cholesky factorizations,” In
Workshop on Edge Computing Using New Commodity
Architectures, pp D--51:52, Chapel Hill, NC, May 2006.

G. Golub and C. F. Van Loan, Matrix Computations, 1989

[3] W. L. Melvin, “A STAP overview,” IEEE A & E Sy
Magazine, Vol. 19, No. 2, pp 19-35, 2004.

X. Sun, “Accelerated generation of Cholesk
in space-time adaptive processing,” TR 2006-06, Duke
University, Department of Computer Science, May 2006.

