
Implementations of FIR for MONARCH Processor
Jinwoo Suh and Janice O. McMahon

University of Southern California – Information Sciences Institute
3811 N. Fairfax Drive, Suite 200, Arlington, VA 22203

{jsuh, jmcmahon}@isi.edu

Introduction1

Stream processing exploits the properties of the stream
applications such as parallelism and throughput-oriented
nature of the applications. One research on the streaming
processing is implementing data flow architecture. One
example is MONARCH architecture being developed at
Raytheon and USC/ISI. We implemented an FIR bank
using ALU clusters in the MONARCH architecture using
its simulator and performed optimizations and analysis of
the results.

MONARCH Processor
The MONARCH processor consists of six RISC processors
and 12 ALU cluster. These are interconnected using
networks. Figure 1 shows a block diagram of the
MONARCH processor.

ED R P

ED R P

ED R P

EDRP

EDRP

EDRP

P

Memory
Interface

P PP

CM

ROM
Port

DIFLs

DIFLs

DIFLs

DIFLs DIFLs

DIFLs

DIFLs DIFLs

DIFLsDIFLs

Memory
Interface

P

RIO

P

PBDIFLs

RIO

ED R P

ED R P

ED R P

EDRP

EDRP

EDRP

P

Memory
Interface

P PP

CM

ROM
Port

DIFLs

DIFLs

DIFLs

DIFLs DIFLs

DIFLs

DIFLs DIFLs

DIFLsDIFLs

Memory
Interface

P

RIO

P

PBDIFLs

RIO

Figure 1: MONARCH processor

The ALU clusters provide 64 GOPS peak performance. The
expected operating clock frequency is 333 MHz.

The authors gratefully acknowledge the extraordinary support of the
Raytheon MONARCH team for the use of their compilers, simulators, and
their generous help. The authors also appreciate Susan Reckitt for her
proofreading.
This effort was sponsored by Defense Advanced Research Projects
Agency (DARPA) through the Dept. of Interior National Business Center
(NBC), under grant number NBCH1050022. The U.S. Government is
authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsement,
either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), Dept. of Interior, NBC, or the U.S. Government.

FIR bank
FIR bank is one of the kernel benchmark suite [1] specified
by Lincoln Labs for Polymorphic Computing Architecture,
a DARPA program. The FIR bank implements a set of M
FIR filters and each FIR filter m, m ∈ {0, 1, …, M-1}, has a
set of impulse response coefficients wm[k], k ∈ {0, … K-
1}. It is mathematically specified as:

1,...,1,0for],[][][
1

0
−=−= ∑

−

=

Nikwkixiy
K

k
mmm

.

The filters are implemented in arithmetic clusters. Since the
data is complex, the number of multiplications and
additions per (input data * coefficient) are both four. This
perfectly matches the configuration of the arithmetic
clusters since the numbers of multipliers and adders in the
arithmetic clusters are the same.

Figure 2 shows a basic data flow pipeline implemented
using arithmetic clusters. The input data is connected to
delays, and then connected to multipliers through
multiplexers. The multipliers multiply the input data and
coefficients. The output data is sent to adders. One output
data from an adder is connected to the next adder such that
as data flows through the adders, the data is accumulated.
On the input side of multipliers, there are increasing
numbers of zeros used to clean the pipeline. Input data is
delayed to match the flow speed in the adder pipeline.

*

* +

+

+

+

*

*

*

Z’s

Z’s

Z’s

Z’s

IN

OUT

mem

mem

mem

mem

0

0 0

0 0 0

0 0 0 0

 Figure2: A floating point FIR implementation

Figure 2 shows FIR for complex data. The complex FIR
can be implemented using the floating point FIR
implementation. There are four pipelines: input real *
coefficient real, input real * coefficient imaginary, input
imaginary * coefficient real, and input imaginary *

coefficient imaginary. These are combined at the end of the
pipeline.

Figure 3: A complex FIR implementation

Implementation Results
In this paper, we implemented FIR bank using the assembly
language for MONARCH. The RISC was not used for this
implementation. Figure 4 shows the results when the
number of coefficients is 24.

Figure 4: Efficiency when number of coefficients is 24

The figure shows that the efficiency is increased as the
number of input data is increased. This is because the initial
startup cost for the pipeline is amortized over the length of
the input data. The efficiency is relatively constant as a
function of the number of filters because the pipeline
simply repeats number of filter times the same way and it
does not change efficiency. When the number of input data
is large, the efficiency is 99.9%. The efficiency is such a
high level that no conventional processor can achieve easily.

Figure 5 shows the efficiency when the number of input
data is 1024.

The figure shows that the efficiency varies as a function of
the number of coefficients. The reason for this is that the
FIR is implemented as a unit of 24 coefficients. For
example, if the number of coefficients is 25, it puts 48
coefficients with 23 (= 48 – 25) zero coefficients. Thus, it

almost reduces the efficiency to half. However, as the
number of coefficient increases, the efficiency also goes up
and get a best efficiency when the number of coefficients is
a multiple of 24.

IN.r
Floating

FIR
Layout
(coeff.r)

Floating
FIR

Layout
(coeff.i)

Floating
FIR

Layout
(coeff.r)

Floating
FIR

Layout
(coeff.i)

IN.i

OUT.r

+ +

-

OUT.i

+ +

+

24 31 38 45 52 59 66 73 80 87 94

1

0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

Number of coefficients
Number of

filters

0.8-1
0.6-0.8
0.4-0.6
0.2-0.4
0-0.2

Figure 5: Efficiency when input data size is 1024

Note that the reduced efficiency is merely due to the simple
implementation of algorithm and it is not due to the
characteristics of MONARCH architecture. With better
implementations of FIR that utilize the ALU clusters more
efficiently using different level of optimizations, it is
possible to obtain higher efficiencies. Estimated efficiencies
for two better algorithms are as shown in Figure 6.

0

0.2

0.4

0.6

0.8

1

1.2
24 29 34 39 44 49 54 59 64 69 74 79 84 89 94

Number of coefficients

E
ffi

ci
en

cy

Implemented algorithm
Estimation using a better algorithm I
Estimation using a better algorithm II

Figure 6. Estimated efficiency using a better algorithm

16 64

25
6

10
24

40
96

1

320

0.2

0.4

0.6

0.8

1

Ef
fic

ie
nc

y

Number of input data

Number of
f ilters

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Conclusion
The authors have presented implementation results of FIR
for MONARCH ALU clusters. Our results show that it is
possible to obtain very high utilization that is close to the
peak performance for FIR whose characteristics matches
the MONARCH ALU cluster.

We used MONARCH assembly language to code the FIR
and the cost of coding is pretty high compared with using
high level languages. However, we expect the coding cost
will be reduced significantly when more tool chains are
available and mature.

References
[1] J. Lebak, A. Reuther, and E. Wong, “Poloymorphous

Computing Architecture (PCA) Kernel-Level Benchmarks,”
Project Report PCA-KERNEL-1, MIT Lincoln Laboratory,
January 2004.

