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Introduction1

Stream processing exploits the properties of the stream 
applications such as parallelism and throughput-oriented 
nature of the applications. One research on the streaming 
processing is implementing data flow architecture. One 
example is MONARCH architecture being developed at 
Raytheon and USC/ISI. We implemented an FIR bank 
using ALU clusters in the MONARCH architecture using 
its simulator and performed optimizations and analysis of 
the results. 

MONARCH Processor 
The MONARCH processor consists of six RISC processors 
and 12 ALU cluster. These are interconnected using 
networks. Figure 1 shows a block diagram of the 
MONARCH processor. 
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Figure 1: MONARCH processor 

The ALU clusters provide 64 GOPS peak performance. The 
expected operating clock frequency is 333 MHz. 
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FIR bank 
FIR bank is one of the kernel benchmark suite [1] specified 
by Lincoln Labs for Polymorphic Computing Architecture, 
a DARPA program. The FIR bank implements a set of M 
FIR filters and each FIR filter m, m ∈ {0, 1, …, M-1}, has a 
set of impulse response coefficients wm[k], k ∈ {0, … K-
1}. It is mathematically specified as: 
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The filters are implemented in arithmetic clusters. Since the 
data is complex, the number of multiplications and 
additions per (input data * coefficient) are both four. This 
perfectly matches the configuration of the arithmetic 
clusters since the numbers of multipliers and adders in the 
arithmetic clusters are the same. 

Figure 2 shows a basic data flow pipeline implemented 
using arithmetic clusters.  The input data is connected to 
delays, and then connected to multipliers through 
multiplexers. The multipliers multiply the input data and 
coefficients. The output data is sent to adders. One output 
data from an adder is connected to the next adder such that 
as data flows through the adders, the data is accumulated. 
On the input side of multipliers, there are increasing 
numbers of zeros used to clean the pipeline. Input data is 
delayed to match the flow speed in the adder pipeline. 
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 Figure2: A floating point FIR implementation 

Figure 2 shows FIR for complex data. The complex FIR 
can be implemented using the floating point FIR 
implementation. There are four pipelines: input real * 
coefficient real, input real * coefficient imaginary, input 
imaginary * coefficient real, and input imaginary * 



coefficient imaginary. These are combined at the end of the 
pipeline. 

 

 
Figure 3: A complex FIR implementation 

Implementation Results 
In this paper, we implemented FIR bank using the assembly 
language for MONARCH. The RISC was not used for this 
implementation. Figure 4 shows the results when the 
number of coefficients is 24. 

Figure 4: Efficiency when number of coefficients is 24 

The figure shows that the efficiency is increased as the 
number of input data is increased. This is because the initial 
startup cost for the pipeline is amortized over the length of 
the input data. The efficiency is relatively constant as a 
function of the number of filters because the pipeline 
simply repeats number of filter times the same way and it 
does not change efficiency. When the number of input data 
is large, the efficiency is 99.9%. The efficiency is such a  
high level that no conventional processor can achieve easily. 

Figure 5 shows the efficiency when the number of input 
data is 1024.  

The figure shows that the efficiency varies as a function of 
the number of coefficients. The reason for this is that the 
FIR is implemented as a unit of 24 coefficients. For 
example, if the number of coefficients is 25, it puts 48 
coefficients with 23 (= 48 – 25) zero coefficients. Thus, it 

almost reduces the efficiency to half. However, as the 
number of coefficient increases, the efficiency also goes up 
and get a best efficiency when the number of coefficients is 
a multiple of 24.  
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Figure 5: Efficiency when input data size is 1024 

Note that the reduced efficiency is merely due to the simple 
implementation of algorithm and it is not due to the 
characteristics of MONARCH architecture. With better 
implementations of FIR that utilize the ALU clusters  more 
efficiently using different level of optimizations, it is 
possible to obtain higher efficiencies. Estimated efficiencies 
for two better algorithms are as shown in Figure 6. 
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Figure 6. Estimated efficiency using a better algorithm 
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Conclusion 
The authors have presented implementation results of FIR 
for MONARCH ALU clusters. Our results show that it is 
possible to obtain very high utilization that is close to the 
peak performance for FIR whose characteristics matches 
the MONARCH ALU cluster. 

We used MONARCH assembly language to code the FIR 
and the cost of coding is pretty high compared with using 
high level languages. However, we expect the coding cost 
will be reduced significantly when more tool chains are 
available and mature. 

References 
[1] J. Lebak, A. Reuther, and E. Wong, “Poloymorphous 

Computing Architecture (PCA) Kernel-Level Benchmarks,” 
Project Report PCA-KERNEL-1, MIT Lincoln Laboratory, 
January 2004. 


