
Runtime Verification of Cognitive Applications
Jonathan Springer, Donald D. Nguyen, Richard A. Lethin

{springer, nguyen, lethin}@reservoir.com
Reservoir Labs, Inc.

Introduction1

Cognitive systems have been the subject of much research,
and are increasingly of interest in embedded systems.
However, cognitive applications have unique characteristics
that make them challenging to verify, validate, and debug.
A cognitive application by definition makes intelligent
decisions – if it were possible to formally and precisely
express its behavior under all circumstances, the cognitive
system would not need to be “cognitive.”

Architectures for cognitive applications commonly utilize a
cognitive system layer on top of which the application is
developed. Unlike a conventional application, however, a
cognitive application’s functionality is often encoded
primarily in data, not in control structures. The internal
operation of such a cognitive application thus resembles an
interpreter. We seek to debug the cognitive application
itself, and to do this we add specialized support into the
cognitive system that runs it.

An example cognitive application is UAV mission
planning. Rather than rely on ground-based operators, as is
currently done, recent work seeks to add autonomy to the
UAV. Space and weight constraints make the UAV
platform an embedded one.

Figure 1: Cognitive V&V infrastructure

We are developing techniques for run-time verification and
validation of cognitive applications. This work has three
main parts:

• Formalisms for specification of safety properties
of cognitive systems

• Data collection infrastructure that can be used for
checking application behavior against specification

• Visualization tools for interpreting the application
data in the event of an error, to aid in debugging

This work was produced with US Government support, under Air Force
contract FA8750-06-C-0133. The US Government has certain rights to this
work.

Specification Formalisms
The purpose of the specification language is to encode
desired correctness properties. As an example, we are
looking at temporal logics, which combine a base logic (e.g.
first-order logic) with mechanisms for discussing state and
change over time. Temporal logics have been investigated
for specification of traditional programming languages as
well [1].

Depending on the expressivity desired, different forms of
temporal logic may be chosen. For example, linear
temporal logic encodes information about a single fully-
ordered timeline. Properties of the application can be
asserted at certain points or ranges in its execution. On the
other hand, if the applications reason about multiple
timelines, computational tree logic may be most useful.

Operationally, a temporal logic specification can be
transformed to a finite-state automaton through Tableau
Construction [2]. As the application runs, its behavior
induces movement through the automaton, and the presence
of certain error states provides a simple mechanism for
checking specification conformance.

A key challenge in applying temporal logic (or any
formalism) is choosing a system that can encode safety
properties of interest to the cognitive application
programmer. The formalism must be complex enough to be
able to encode sufficiently sophisticated statements while
being simple enough to admit efficient checking at runtime.
Cognitive applications often need to be able to handle
uncertainty, and so it may be necessary for the specification
formalism to incorporate probabilistic elements.

Events

Cognitive
System

Instrumented
System

Runtime System

State
Checker

Data
Collector Vi

su
al

iza
tio

n
an

d
An

al
ys

is

Spec.
Violation

Formal Specification of Cognitive System

Runtime
Data

Spec.
Violation Data Collection

Infrastructure Data Collection Infrastructure
The characteristics of cognitive systems make them
challenging to debug. Most conventional debugging
methods rely on reproducing the circumstances that lead to
a fault repeatedly in a debugger. This approach works
adequately for a conventional application, but for a
cognitive application that interacts with a complex
environment that cannot easily be reproduced, and that may
contain significant nondeterminism, the conventional
approach may be insufficient.

We aim to develop the capability for first-fault debugging.
A first-fault debugger attempts to capture sufficient context
for an error to enable debugging without resorting to
attempts to recreate the circumstances. First-fault
debuggers for traditional systems [3] rely on saving the
control flow of the application, as well as some key state.
As noted previously, a cognitive application is primarily in
the data, so the need to save data versus control flow is
correspondingly greater.

Our approach is to design a first-fault debugger around the
notion of producing a data trace that follows the flow of
data used to compute a value of interest. This value would
be identified through a state check violation, and identified
with a high-level construct or concept which we term an
event. Events have dependencies on other events, forming
a DAG that highlights the data and structure of that data
that is relevant to the detected error.

A key challenge for data collection is how to collect and
retain significant amounts of data without imposing undue
burdens on the cognitive system. These burdens can be in
execution time or storage space. Techniques for managing
this burden include checkpointing combined with replay
and/or reconstruction, data aging, as well as simple
compression and clever state encodings. Checkpointing
saves the entire program (cog app) state at certain intervals.
For errors that occur between checkpoints, the system can
replay the execution up to the error state, or reconstruct the
states leading up to the error via disassembly and analysis
of the machine code. In either case, it is always necessary
to save state updates that come from “outside” the system.
Data aging recognizes that in a practical system, it may be
impossible to store the complete program execution history,
so some policy for selecting the most relevant data is
needed. It is likely that a combination of these techniques
would be most effective.

We have been investigating Soar as a representative
cognitive system [4]. A fundamental mechanic in Soar is
that working memory elements (WMEs) match productions
(rules), leading to execution of corresponding production
actions. Actions update the system state by changing
WMEs, leading to further matching. Production firings
map to our concept of an event, and are linked together
through WMEs, which can be viewed as the dependencies.
Specification statements can naturally be made with respect
to the presence or absence of WMEs.

It is important to emphasize that our approach is intended to
be general beyond Soar, however. Generalizing to other
production systems is obvious, but any cognitive system in
which there is a notion of causal state change over time
should be compatible with our approach.

Figure 2: Data collection framework, state checker, and
visualization modules

Visualization
The event dependency structure naturally lends itself to
visualization, for example, as a graphical display of the
event graph. The event graph is likely to be complex, such
that any visualization will benefit from graph summary and
other inspection techniques that allow management of
graphs that cannot feasibly be viewed in their entirety at
once. Visualization should also be interactive, and should
interface to the collected data trace as information is
requested. Many idioms from traditional debuggers can be
applied at this level.

Conclusion
We are designing infrastructure to assist in validating and
debugging cognitive applications. Specification languages
and the associated data collection and checking provide two
main benefits: additional assurance that the application
behaves as desired and information that can characterize
and help debug errors. We are currently experimenting
with specification languages based on temporal logic, and
prototyping data collection and state checking techniques.
To validate our approach, we are utilizing a UAV planning
scenario as a cognitive application on top of a Soar
cognitive system.

Some of the open questions that we hope to address are:

• What kinds of logic (temporal or otherwise) are
expressive enough to encode commonly desired
specifications?

• Is the overhead from data collection acceptable in
terms of application performance?

• Does the event dependency graph capture
sufficient information in an appropriate form for
analysis and debugging?

References
 [1] K. Havelund, “An Overview of the Runtime Verification

Tool Java PathExplorer”, Formal Methods in System Design,
24(2), March 2004.

 [2] M.C.W. Geilen, “On the construction of monitors for
temporal logic properties,” in RV'01 - First Workshop on
Runtime Verification, volume 55 of Electronic Notes in
Theoretical Computer Science, Elsevier Science Publishers,
2001.

 Runtime System

Violations

…

Events

State Checker

Visualization and
Analysis

 …
Data Collection

 [3] A. Ayers, R. Schooler, A. Agarwal, C. Metcalf, J. Rhee and
E. Witchel, “TraceBack: First Fault Diagnosis by
Reconstruction of Distributed Control Flow” In the
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI)
2005.

 [4] J. E. Laird and Paul Rosenbloom, “The Evolution of the Soar
Cognitive Architecture”, in Mind Matters: A Tribute to Allen
Newell, Eds. D. M. Steier and T. M. Mitchell, 1996.

