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Introduction1

Cognitive systems have been the subject of much research, 
and are increasingly of interest in embedded systems.   
However, cognitive applications have unique characteristics 
that make them challenging to verify, validate, and debug.  
A cognitive application by definition makes intelligent 
decisions – if it were possible to formally and precisely 
express its behavior under all circumstances, the cognitive 
system would not need to be “cognitive.” 

Architectures for cognitive applications commonly utilize a 
cognitive system layer on top of which the application is 
developed.  Unlike a conventional application, however, a 
cognitive application’s functionality is often encoded 
primarily in data, not in control structures. The internal 
operation of such a cognitive application thus resembles an 
interpreter.  We seek to debug the cognitive application 
itself, and to do this we add specialized support into the 
cognitive system that runs it. 

An example cognitive application is UAV mission 
planning. Rather than rely on ground-based operators, as is 
currently done, recent work seeks to add autonomy to the 
UAV.  Space and weight constraints make the UAV 
platform an embedded one. 

 

                                                

 
Figure 1: Cognitive V&V infrastructure 

We are developing techniques for run-time verification and 
validation of cognitive applications. This work has three 
main parts: 

• Formalisms for specification of safety properties 
of cognitive systems 

• Data collection infrastructure that can be used for 
checking application behavior against specification 

• Visualization tools for interpreting the application 
data in the event of an error, to aid in debugging 
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Specification Formalisms 
The purpose of the specification language is to encode 
desired correctness properties. As an example, we are 
looking at temporal logics, which combine a base logic (e.g. 
first-order logic) with mechanisms for discussing state and 
change over time. Temporal logics have been investigated 
for specification of traditional programming languages as 
well [1]. 

Depending on the expressivity desired, different forms of 
temporal logic may be chosen.  For example, linear 
temporal logic encodes information about a single fully-
ordered timeline. Properties of the application can be 
asserted at certain points or ranges in its execution.  On the 
other hand, if the applications reason about multiple 
timelines, computational tree logic may be most useful. 

Operationally, a temporal logic specification can be 
transformed to a finite-state automaton through Tableau 
Construction [2]. As the application runs, its behavior 
induces movement through the automaton, and the presence 
of certain error states provides a simple mechanism for 
checking specification conformance. 

A key challenge in applying temporal logic (or any 
formalism) is choosing a system that can encode safety 
properties of interest to the cognitive application 
programmer.  The formalism must be complex enough to be 
able to encode sufficiently sophisticated statements while 
being simple enough to admit efficient checking at runtime. 
Cognitive applications often need to be able to handle 
uncertainty, and so it may be necessary for the specification 
formalism to incorporate probabilistic elements. 
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The characteristics of cognitive systems make them 
challenging to debug.  Most conventional debugging 
methods rely on reproducing the circumstances that lead to 
a fault repeatedly in a debugger.  This approach works 
adequately for a conventional application, but for a 
cognitive application that interacts with a complex 
environment that cannot easily be reproduced, and that may 
contain significant nondeterminism, the conventional 
approach may be insufficient. 

We aim to develop the capability for first-fault debugging.  
A first-fault debugger attempts to capture sufficient context 
for an error to enable debugging without resorting to 
attempts to recreate the circumstances.  First-fault 
debuggers for traditional systems [3] rely on saving the 
control flow of the application, as well as some key state.  
As noted previously, a cognitive application is primarily in 
the data, so the need to save data versus control flow is 
correspondingly greater. 



Our approach is to design a first-fault debugger around the 
notion of producing a data trace that follows the flow of 
data used to compute a value of interest. This value would 
be identified through a state check violation, and identified 
with a high-level construct or concept which we term an 
event.  Events have dependencies on other events, forming 
a DAG that highlights the data and structure of that data 
that is relevant to the detected error. 

A key challenge for data collection is how to collect and 
retain significant amounts of data without imposing undue 
burdens on the cognitive system.  These burdens can be in 
execution time or storage space.  Techniques for managing 
this burden include checkpointing combined with replay 
and/or reconstruction, data aging, as well as simple 
compression and clever state encodings.  Checkpointing 
saves the entire program (cog app) state at certain intervals.  
For errors that occur between checkpoints, the system can 
replay the execution up to the error state, or reconstruct the 
states leading up to the error via disassembly and analysis 
of the machine code.  In either case, it is always necessary 
to save state updates that come from “outside” the system. 
Data aging recognizes that in a practical system, it may be 
impossible to store the complete program execution history, 
so some policy for selecting the most relevant data is 
needed.  It is likely that a combination of these techniques 
would be most effective. 

We have been investigating Soar as a representative 
cognitive system [4]. A fundamental mechanic in Soar is 
that working memory elements (WMEs) match productions 
(rules), leading to execution of corresponding production 
actions.  Actions update the system state by changing 
WMEs, leading to further matching.  Production firings 
map to our concept of an event, and are linked together 
through WMEs, which can be viewed as the dependencies.  
Specification statements can naturally be made with respect 
to the presence or absence of WMEs. 

It is important to emphasize that our approach is intended to 
be general beyond Soar, however.  Generalizing to other 
production systems is obvious, but any cognitive system in 
which there is a notion of causal state change over time 
should be compatible with our approach. 

  

 

Figure 2: Data collection framework, state checker, and 
visualization modules 

Visualization 
The event dependency structure naturally lends itself to 
visualization, for example, as a graphical display of the 
event graph.  The event graph is likely to be complex, such 
that any visualization will benefit from graph summary and 
other inspection techniques that allow management of 
graphs that cannot feasibly be viewed in their entirety at 
once.  Visualization should also be interactive, and should 
interface to the collected data trace as information is 
requested.  Many idioms from traditional debuggers can be 
applied at this level. 

Conclusion 
We are designing infrastructure to assist in validating and 
debugging cognitive applications.  Specification languages 
and the associated data collection and checking provide two 
main benefits: additional assurance that the application 
behaves as desired and information that can characterize 
and help debug errors.  We are currently experimenting 
with specification languages based on temporal logic, and 
prototyping data collection and state checking techniques.  
To validate our approach, we are utilizing a UAV planning 
scenario as a cognitive application on top of a Soar 
cognitive system. 

Some of the open questions that we hope to address are: 

• What kinds of logic (temporal or otherwise) are 
expressive enough to encode commonly desired 
specifications? 

•  Is the overhead from data collection acceptable in 
terms of application performance? 

• Does the event dependency graph capture 
sufficient information in an appropriate form for 
analysis and debugging? 
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