
Taking the HPEC Challenge with VSIPL++
Don McCoy, Stefan Seefeld, Mark Mitchell, Jules Bergmann

CodeSourcery, Inc.
jules@codesourcery.com

Introduction
CodeSourcery, Inc has ported the HPEC Challenge Kernel
Benchmarks to the VSIPL++ API. In this presentation we
will describe these benchmarks, how they were ported to
VSIPL++, and their performance on commodity clusters
and embedded systems. Using Sourcery VSIPL++, a
commercially available, optimized implementation of the
VSIPL++ API developed by CodeSourcery, we will
demonstrate that high-performance benchmark
implementations can be written that are portable across
multiple platforms. We will also demonstrate the ease with
which the VSIPL++ API for data-parallelism can be
applied, and show that data-parallelism does not penalize
serial performance.

HPEC Challenge Kernel-Level Benchmarks
The HPEC Challenge Benchmark Suite [4, 5] was created
by MIT/LL to allow the quantitative evaluation of different
HPEC embedded systems and tools. It consists of eight
single-processor kernel benchmarks and a multi-processor
scalable synthetic SAR benchmark. In this presentation, we
describe the implementation of the suite's 4 signal
processing kernel benchmarks and 1 communication kernel
in VSIPL++.

VSIPL++
The VSIPL++ API [1] specifies a standardized C++
interface to parallel, high-performance, signal-processing
libraries. VSIPL++ is the next-generation, object-oriented,
parallel version of the popular C-VSIPL API [7]. VSIPL++
provides improvements in portability, productivity, and
performance relative to both VSIPL and ad-hoc approaches.

Sourcery VSIPL++ is a high-quality, commercially
available implementation of the VSIPL++ API developed
by CodeSourcery. It has been designed from the ground up
to deliver the full performance possible with the VSIPL++
API. It uses technology such as expression templates and
math library dispatch to deliver serial application
performance on par with vendor libraries, without
sacrificing application portability. It is also a full
implementation of the VSIPL++ Parallel API. For this
paper, we used Sourcery VSIPL++ release 1.1, which runs
on commodity Intel/AMD clusters and Mercury Embedded
PowerPC multi-computers.

The HPEC Challenge Benchmarks exercise both the serial
performance and data parallel aspects of VSIPL++.

Implementation Methodology
For each kernel benchmark, we created a VSIPL++
implementation.

Each benchmark was separated into initialization,
computation, and finalization. Performance is measured for
multiple iterations of the computation. The iteration count

is adjusted so the time interval is large relative to the
measurement error.
benchmark.init();
timer.start();
for (l=0; l<loop_count; ++l)
 benchmark.compute(...);
timer.stop();
benchmark.fini();

At each data point, multiple measurements are taken. Of
these the median is used to for the reported value, and the
min and max are used to indicate expected variation.

The HPEC Challenge Kernel benchmarks define a single
set of parameters for each dataset. To determine how
varying the parameters affect the benchmark performance,
we perform each benchmark by sweeping one or more of
the parameters.

Performance measurements will be taken on the commodity
Intel/AMD clusters at the Georgia Tech Research Institute
PaSTEC [3] and on embedded Mercury PowerPC
multicomputers.

The following paragraphs describe in more detail the FIR
filter bank, one of the kernels that we will present results
for at the workshop.

FIR Filter Bank Kernel Benchmark Results
This benchmark represents a bank of M FIR filters, each
with K unique coefficients, operating on input/output
vectors of size N. For each input vector, the following
output vector is computed:

ym [i]= ∑
k = 0

K− 1

xm[i− k]wm[k] , for i= 0,1,� N− 1.

This can be implemented as either a time-domain or
frequency-domain computation. Which is more efficient
depends on the filter parameters.

Two datasets are defined (table 1). Set 1 is sized for
efficient frequency-domain processing. Set 2 is sized for
efficient time-domain processing.

Parameter Description Set 1 Set 2

M Number of filters 64 20

N Length of input/output vectors 4096 1024

K Number of filter coefficients 128 12

W Workload (MFLOP) 33 1.97

Table 1: FIR Filter Bank Datasets

FIR Filter Bank Serial Implementation

mailto:jules@codesourcery.com

Two implementations of the FIR filter bank were written.
The first uses the VSIPL++ FIR object and is intended for
the cases where time-domain computation is advantageous.
The computation loop is:

for (index_type i=0; i<M; ++i)
 (*fir[i])(inputs.row(i),
 outputs.row(i));

The second implementation uses the VSIPL++ FFT object
to perform an explicit fast-convolution. It is intended for
cases were frequency-domain processing is advantageous.
The computation loop is:
for (index_type i=0; i<M; ++i) {
 fwd_fft(inputs.row(i), tmp);
 tmp *= response.row(i);
 inv_fft(tmp, outputs.row(i);
 }

Fir Filter Bank Serial Performance
Using Sourcery VSIPL++ 1.1, results were collected on an
Intel Pentium 4 Xeon system. Figure 1 shows the single
processor performance.
FIR Filter Bank Parallel Implementation
VSIPL++ supports data-parallelism through global array
semantics [6]. VSIPL++ blocks are given mappings that
describe how they can be distributed over multiple
processors. Operations on distributed blocks are then
performed in parallel, with VSIPL++ managing the
necessary communications and synchronizations.

Many VSIPL++ operations are implicitly data-parallel,
requiring no changes after mappings have been given to
data. Operations that are explicitly data-parallel, such as
those used to implement the frequency domain FIR Filter
bank, can be made to run in parallel by converting them use
local views. For example, the following changes are

necessary to the frequency domain implementation's
computation loop:
length_type l_M = inputs.local().size(0);
for (index_type i=0; i<l_M; ++i) {
 fwd_fft(inputs.local().row(i), tmp);

Figure 1: Serial FIR Filter Bank
Performance

 tmp *= response.local().row(i);
 inv_fft(tmp, outputs.local().row(i);
 }

FIR Filter Bank Parallel Performance
Using Sourcery VSIPL++ 1.1, results were collected on the
GTRI cluster's 32 dual-processor Intel Xeon nodes. Figure
2 shows the performance of data set 1 running from 1 to 64
processors.

Figure 3 shows the near linear speedup when the
input/output size N is fixed at 4096 for data set 1.

References
[1] CodeSourcery, Inc. VSIPL++ Specification 1.0. Georgia

Tech Res. Corp. 2005 [online] Available: http://www.hpec-
si.org.

[2] CodeSourcery, Inc. Sourcery VSIPL++. [online] Available:
http://www.codesourcery.com/vsiplplusplus.

[3] Georgia Tech Research Institute. Parallel Software Testing
and Evaluation Center. [online] Available:
https://pastec.gtri.gatech.edu/.

[4] R. Haney, T. Meuse, J. Kepner, and J. Lebak. The High
Performance Embedded Computing (HPEC) Challenge
Benchmark Suite. MIT/LL 2005. [online] Available:
http://www.ll.mit.edu/HPECChallenge.

[5] R. Haney, T. Meuse, J. Kepner, and J. Lebak. "The High
Performance Embedded Computing (HPEC) Challenge
Benchmark Suite." HPEC Workshop, Lexington, MA, 2005.

[6] J. Lebak. et al. “Parallel VSIPL++: an open standard software
library for high-performance parallel signal processing,”
Proceedings of the IEEE, Vol 93, Issue 2, Feb. 2005.

[7] D. A. Schwartz, R. R. Judd, W. J. Harrod, and D. P. Manley,
Vector, Signal, and Image Processing Library (VSIPL) 1.0
application programmer's interface: Georgia Tech Res. Corp,
2000 [online] Available: http://www.vsipl.org.

Figure 3: FIR Filter Bank Performance For Dataset
1

Figure 2: Parallel FIR Filter Bank
Performance

