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Introduction1

Exact inference is an approach for computing probabilities 
in Bayesian networks. Recently, this has been studied by 
various teams in the DARPA ACIP program. The popular 
Lauritzen Speigelhalter algorithm [2] converts a given 
Bayesian Network to a Junction Tree representation and 
then computes the exact inference on the same. The reason 
for this intermediate tree representation is that the 
commonly used inference algorithms will give erroneous 
results for Bayesian networks which have undirected 
cycles, whereas they can be easily modified and applied to 
the resultant junction tree. In this work, we present a 
parallel implementation of the exact inference problem on a 
general Bayesian Network. Our experiments show that the 
implementation scales well with increasing number of 
processors while the Intel PNL library [7] does not scale. 

Background 
Bayesian Networks: A Bayesian network [1] is 
represented by a directed acyclic graph (DAG), with each 
node representing a random variable. An edge between two 
nodes indicates a relation between the variables and the 
direction indicates the causality. If a node has a known 
value, it is said to be an evidence node. The joint 
distribution for each variable is a function of all its parents 
and is stored as a conditional probability table (CPT). 

Exact Inference: Exact inference in a Bayesian network 
involves determining the probabilities of the query 
variables, given the exact state of the evidence variables. 
When we get new information about variables in the 
network, we update the conditional probability tables to 
reflect this new information. This updating is known as 
evidence propagation [2]. Once all the beliefs are updated, 
the conditional probability tables contain the most recent 
beliefs in any variable and can be queried like a simple 
database to evaluate probabilities.  

Junction Trees: A junction tree [6] of a G is a tree J such 
that each maximal clique C of G is a node in J, and all the 
cliques represented by the nodes of the junction tree J 
satisfy the running intersection property [4]. Each edge in J 
is labeled with the intersection of the cliques represented by 
its bordering vertices. These labels are called separator sets 
or sepsets. The clique width of a junction tree J is defined 
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as the maximum number of random variables in the clique 
represented by any node in J.  

Our Parallel Algorithm 
We assume a CREW PRAM model of computation and use 
adjacency matrices to represent graphs. Starting with a 
Bayesian network G with maximum degree k and clique 
width w (=k+1), our parallel algorithm for p processors 
proceeds in the following stages: 

Moralization: A moral graph of a DAG G is an undirected 
graph where all the parents of each node in G form a clique. 
We first moralize G in parallel, spending O(n2/p + nk2/p) 
time, resulting in the graph Gmor. 

Triangulation and Identifying Maximal Cliques: An 
undirected graph is triangulated iff every cycle of length 
four or greater contains a chord between any two non 
adjacent nodes in the cycle. To triangulate Gmor, we take its 
vertices one by one, connecting all its children and parents 
to each other. The vertices are chosen in increasing order of 
degree, and we perform this sorting in parallel in log p time. 
The cliques thus formed are inserted in to the set of vertices 
C of the Junction tree if they are maximal. In our parallel 
algorithm, we combined the triangulation step with the 
maximal clique selection step. The total time complexity of 
this stage is O(n3/p + nlog p + n2 + nw2). 

Constructing the Junction Tree: After identifying the 
cliques Ci, we proceed to connect them to obtain the 
junction tree. From the running intersection property, for 
every j, there exists an i < j such that: 

Cj ∩ (C1 ∪ C2 ∪ … ∪ Cj-1) ⊆ Ci

For every j, we choose one i for which this property holds, 
and connect Cj to Ci [5]. Finally, for each edge in this tree J, 
we compute the intersection of the cliques bordering the 
edge and insert it as a separator set node between them. 
Our parallel algorithm for this stage takes O(wn2/p) time. 

Potential Table Calculation: In this step, we reintroduce 
the information about the relation between the variables by 
computing potential tables for each clique Ci from the 
information originally stored in G. Since each node in J 
represents a Clique of w nodes in the original Bayesian 
network, and each variable can take one of r values, there 
are rw combined random experiments represented by each 
node in J. We calculate the potential tables for all cliques 
and edges in parallel, and this step takes O(wrwn/p) time. 

Exact Inference Calculation: Our parallel algorithm for 
exact inference on Junction trees [3] assumes that the 
evidence comes on a single variable that is present in the 
root node of the tree. The algorithm involves rooting the 



tree at any clique that contains the evidence variable, and 
then propagating the belief all through the tree, in a way 
similar to the way it is performed in a tree Bayesian 
network. However, in this case, the messages passed 
between nodes consist of potential tables. We have pointer 
jumping to parallelize this computation on junction trees. 
The complexity of this stage is O(rwlog(n).n/p). 

 

 

 
Figure 1: Overall Execution Time for Exact Inference. 

Sequential Complexity: If all the above stages are 
performed sequentially, the overall time complexity is seen 
to be O(n3 + n2w + wrwn + nrw). 

Experimental Results 
We used three machines for our experiments. The Shared 
Memory Processor at USC is a SunFire 15K system with 64 
UltraSPARC III 1.2 GHz processors and a 150 MHz Sun 
Fireplane redundant 18X18 data, address, and response 
crossbar interconnect. We also accessed the computing 
resources at the San Diego Supercomputer Center. One of 
the machines is a DataStar cluster with 1024 IBM P655 
nodes running at 1.5 GHz with 2 GB of memory per 
processor. The theoretical peak performance of this 
machine is 15 TeraFLOPS. Furthermore each node is 
connected to a GPFS (parallel file system) through a fiber 
channel. The second large machine we ran the experiments 
on is the Teragrid machine - SGI Altix. It has 1.6 GHz 
Itanium 2 processors with 1024 Gbytes of shared memory. 
It runs SGI ProPack 3.4 with OpenMP. 

We used linear, balanced, and arbitrary Bayesian networks 
with 1024 nodes and node in(out) degrees being 1(1), 1(2), 
and 5(5) respectively. We ran the experiments with 
variables having 2, 4, and 16 states. The OpenMP directive 
used were omp parallel and omp parallel for.  

Our experiments (Figure 1) show that our implementation 
of the exact inference algorithm is scalable. In addition, we 
performed the experiments with the widely available Intel 
PNL Library, and found that their implementation does not 
scale well. 

Conclusion 
We have presented an implementation of a parallel 
algorithm for exact inference on arbitrary Bayesian 
networks. Our experiments show that our solution scales 
with the number of processors used, while the Intel PNL 
library does not. 
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