

Parallelizing Exact Inference in Bayesian Networks
Vasanth Krishna Namasivayam, Animesh Pathak and Viktor K. Prasanna
Department of Electrical Engineering, University of Southern California

{namasiva, animesh, prasanna}@usc.edu

Introduction1

Exact inference is an approach for computing probabilities
in Bayesian networks. Recently, this has been studied by
various teams in the DARPA ACIP program. The popular
Lauritzen Speigelhalter algorithm [2] converts a given
Bayesian Network to a Junction Tree representation and
then computes the exact inference on the same. The reason
for this intermediate tree representation is that the
commonly used inference algorithms will give erroneous
results for Bayesian networks which have undirected
cycles, whereas they can be easily modified and applied to
the resultant junction tree. In this work, we present a
parallel implementation of the exact inference problem on a
general Bayesian Network. Our experiments show that the
implementation scales well with increasing number of
processors while the Intel PNL library [7] does not scale.

Background
Bayesian Networks: A Bayesian network [1] is
represented by a directed acyclic graph (DAG), with each
node representing a random variable. An edge between two
nodes indicates a relation between the variables and the
direction indicates the causality. If a node has a known
value, it is said to be an evidence node. The joint
distribution for each variable is a function of all its parents
and is stored as a conditional probability table (CPT).

Exact Inference: Exact inference in a Bayesian network
involves determining the probabilities of the query
variables, given the exact state of the evidence variables.
When we get new information about variables in the
network, we update the conditional probability tables to
reflect this new information. This updating is known as
evidence propagation [2]. Once all the beliefs are updated,
the conditional probability tables contain the most recent
beliefs in any variable and can be queried like a simple
database to evaluate probabilities.

Junction Trees: A junction tree [6] of a G is a tree J such
that each maximal clique C of G is a node in J, and all the
cliques represented by the nodes of the junction tree J
satisfy the running intersection property [4]. Each edge in J
is labeled with the intersection of the cliques represented by
its bordering vertices. These labels are called separator sets
or sepsets. The clique width of a junction tree J is defined

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA) or the U.S. government.

Effort sponsored by the Defense Advanced Research Projects Agency
(DARPA) through the Department of the Interior National Business Center
under grant number NBCH104009.

as the maximum number of random variables in the clique
represented by any node in J.

Our Parallel Algorithm
We assume a CREW PRAM model of computation and use
adjacency matrices to represent graphs. Starting with a
Bayesian network G with maximum degree k and clique
width w (=k+1), our parallel algorithm for p processors
proceeds in the following stages:

Moralization: A moral graph of a DAG G is an undirected
graph where all the parents of each node in G form a clique.
We first moralize G in parallel, spending O(n2/p + nk2/p)
time, resulting in the graph Gmor.

Triangulation and Identifying Maximal Cliques: An
undirected graph is triangulated iff every cycle of length
four or greater contains a chord between any two non
adjacent nodes in the cycle. To triangulate Gmor, we take its
vertices one by one, connecting all its children and parents
to each other. The vertices are chosen in increasing order of
degree, and we perform this sorting in parallel in log p time.
The cliques thus formed are inserted in to the set of vertices
C of the Junction tree if they are maximal. In our parallel
algorithm, we combined the triangulation step with the
maximal clique selection step. The total time complexity of
this stage is O(n3/p + nlog p + n2 + nw2).

Constructing the Junction Tree: After identifying the
cliques Ci, we proceed to connect them to obtain the
junction tree. From the running intersection property, for
every j, there exists an i < j such that:

Cj ∩ (C1 ∪ C2 ∪ … ∪ Cj-1) ⊆ Ci

For every j, we choose one i for which this property holds,
and connect Cj to Ci [5]. Finally, for each edge in this tree J,
we compute the intersection of the cliques bordering the
edge and insert it as a separator set node between them.
Our parallel algorithm for this stage takes O(wn2/p) time.

Potential Table Calculation: In this step, we reintroduce
the information about the relation between the variables by
computing potential tables for each clique Ci from the
information originally stored in G. Since each node in J
represents a Clique of w nodes in the original Bayesian
network, and each variable can take one of r values, there
are rw combined random experiments represented by each
node in J. We calculate the potential tables for all cliques
and edges in parallel, and this step takes O(wrwn/p) time.

Exact Inference Calculation: Our parallel algorithm for
exact inference on Junction trees [3] assumes that the
evidence comes on a single variable that is present in the
root node of the tree. The algorithm involves rooting the

tree at any clique that contains the evidence variable, and
then propagating the belief all through the tree, in a way
similar to the way it is performed in a tree Bayesian
network. However, in this case, the messages passed
between nodes consist of potential tables. We have pointer
jumping to parallelize this computation on junction trees.
The complexity of this stage is O(rwlog(n).n/p).

Figure 1: Overall Execution Time for Exact Inference.

Sequential Complexity: If all the above stages are
performed sequentially, the overall time complexity is seen
to be O(n3 + n2w + wrwn + nrw).

Experimental Results
We used three machines for our experiments. The Shared
Memory Processor at USC is a SunFire 15K system with 64
UltraSPARC III 1.2 GHz processors and a 150 MHz Sun
Fireplane redundant 18X18 data, address, and response
crossbar interconnect. We also accessed the computing
resources at the San Diego Supercomputer Center. One of
the machines is a DataStar cluster with 1024 IBM P655
nodes running at 1.5 GHz with 2 GB of memory per
processor. The theoretical peak performance of this
machine is 15 TeraFLOPS. Furthermore each node is
connected to a GPFS (parallel file system) through a fiber
channel. The second large machine we ran the experiments
on is the Teragrid machine - SGI Altix. It has 1.6 GHz
Itanium 2 processors with 1024 Gbytes of shared memory.
It runs SGI ProPack 3.4 with OpenMP.

We used linear, balanced, and arbitrary Bayesian networks
with 1024 nodes and node in(out) degrees being 1(1), 1(2),
and 5(5) respectively. We ran the experiments with
variables having 2, 4, and 16 states. The OpenMP directive
used were omp parallel and omp parallel for.

Our experiments (Figure 1) show that our implementation
of the exact inference algorithm is scalable. In addition, we
performed the experiments with the widely available Intel
PNL Library, and found that their implementation does not
scale well.

Conclusion
We have presented an implementation of a parallel
algorithm for exact inference on arbitrary Bayesian
networks. Our experiments show that our solution scales
with the number of processors used, while the Intel PNL
library does not.

References
[1] S. Russell and P. Norvig, Artificial Intelligence: A modern

approach. Prentice Hall, 1995.

[2] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations
with probabilities on graphical structures and their
application to expert systems,” in J. of the Royal Statistical
Society, 1988, pp. 157–224.

[3] V. K. Namasivayam and V. K. Prasanna, “Scalable parallel
implementation of exact inference in bayesian networks,” in
Twelfth International Conference on Parallel and Distributed
Systems (ICPADS), July 2006.

[4] A. V. Kozlov, “Parallel implementations of probabilistic
inference,” in Computer 29(12), Dec 96, pp. 33–40.

[5] D. M. Pennock, “Logarithmic time parallel Bayesian
inference,” in [UAI-98], USA, July 1998, pp. 431– 438.

[6] B. A. and G. D., “A sufficiently fast algorithm for finding
close to optimal junction trees,” in [UAI-96], USA, 1996.

[7] Intel Probabilistic Network Library,
http://www.intel.com/technology/computing/pnl/index.htm.

