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Abstract 
 
This abstract describes the need for High Performance 
Computing (HPC) to facilitate the development and 
implementation of a nonlinear equalizer that is capable of 
mitigating and/or eliminating nonlinear distortion to extend 
the dynamic range of Radar front-end receivers decades 
beyond the analog state-of-the-art.  The search space for the 
optimal nonlinear equalization (NLEQ) solution is 
computationally intractable using only a single desktop 
computer. However, we have been able to leverage a 
combination of an efficient greedy search with the High 
Performance Computing technologies of LLGrid and 
MatlabMPI to construct a NLEQ architecture that is capable 
of extending the dynamic range of Radar front-end 
receivers by over 25dB.
 
Introduction 
 
The linear dynamic range of RF receivers is a limiting 
factor in the performance of many high-end military Radar 
receivers.  The nonlinear distortion generated in the analog-
to-digital converter (ADC) and the analog receiver limits 
the capability of the backend Radar signal processor from 
unambiguously detecting targets with weak signatures.  By 
reducing and/or eliminating nonlinear induced distortion 
after the ADC, NLEQ enables the Radar signal processor to 
detect weak target signals that would otherwise be masked 
by unwanted nonlinear artifacts. 
 
The process of identifying an NLEQ architecture is 
computational onerous due to the vast size of the search 
space of candidate architectures and the computational 
complexity of evaluating each candidate. Historically, large 
polynomial representations were implemented using 
architectures such as the Volterra filter (see e.g., [1]). To 
overcome limitations in the over-parameterized Volterra 
representation, we have devised an alternate structure 
(Partitioned Horizontal Coordinate System - PHoCS) that 
enables us to efficiently search for and identify a robust and 
computationally efficient NLEQ architecture. In this 
abstract we describe PHoCS and the methods to identify 
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computationally efficient equalization architectures by 
using a specialized greedy algorithm running on a large grid 
computer (LLgrid) using MatlabMPI [6] that is designed to 
run in parallel on host hardware. 
 
Methodology 
 
Using a Volterra filter model for our equalization problem 
is prohibitively expensive in terms of computational 
complexity; a pth order Volterra kernel with a memory 

depth of L requires 
1L p

p

+ −⎛ ⎞
⎜
⎝ ⎠

⎟  coefficients.  For example 

a single 5th order Volterra kernel with a memory depth of 8 
requires 792 coefficients.  This makes the physical 
realization of a Volterra-based polynomial filter impractical 
for real-time implementation at high sample rates. 
 
As an alternative to the Volterra filter method we have 
formulated the PHoCS architecture [2] which is a successor 
to the Diagonal Coordinate System (DCS) [3] architecture.  
The output of our nonlinear equalizer is the sum of the 
outputs of several PHoCS Processing Elements (PEs). Each 
PE as shown in Figure 1 is comprised of linear delays, 
linear filters and multipliers.  Blocks  are integer 
delay values and 
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jh  are identified and optimized to best mitigate nonlinear 
distortion of the target receiver.  
 

 
Figure 1:  Representation of a PHoCS Processing Element 

 
Software which we developed in Matlab is used to 
determine the appropriate PHoCS PEs that comprise an  
NLEQ processor.  For a given NLEQ processor, each PE is 
chosen based on its composite equalization performance 



from a pool of candidate PHoCS PEs.  Because the 
processor needs to be implemented in hardware, we would 
like to get the most equalization performance from the least 
number of PHoCS PEs.  So, the objective is to choose N 
PHoCS elements from a pool of M which have the very best 
performance. However, this search space can be very large; 
testing all permutations would require deriving coefficients 

for and testing N
M
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 PEs.  For typical values of M 

and N this number can become prohibitively large. 
 
To resolve this problem we have implemented a greedy 
algorithm that uses an incremental approach and searches 
for a locally optimal solution.  In short, we choose the 
processing element that works best in conjunction with the 
PEs we have already chosen until we have N elements. This 
algorithm drastically reduces our search space since the 
greedy algorithm only requires the examination of 
approximately M N×  cases (see Table 1). 
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M N×  

M = 1,200, N = 20 4310  24,000 

M = 11,400, N = 80 20510  912,000 

Table 1:  Greedy algorithm provides computational tractability for 
NLEQ 

 
The Need for High Performance Computing 
Technologies 
 
While the real-time operation of the equalizer is 
parsimonious, the computational complexity of researching 
new NLEQ architectures based on PHoCS is quite 
challenging.  Each step in the construction and evaluation 
of an NLEQ architecture requires many floating point 
operations (FLOPs).  To put the amount of computations 
into perspective, we estimate the computational cost of 
identifying an NLEQ architecture that determines the 
performance limit of the NLEQ software. 
 
There are three major steps in the NLEQ software. In the 
first step, the major computational bottleneck is the 
translation of the time domain data to the frequency domain 
via the FFT, the computational cost of which is given by 

 [4]. The QR-decomposition for determining a 
least squares solution dominates the computation in the 
second step.  This uses modified Gram-Schmidt which 
requires  FLOPs [5].   The third step is dominated by 
sending all signals through the NLEQ processor. In our 
example simulation, the numbers of FLOPs for of these 
three steps are approximately 456 trillion, 19 trillion, and 
55 trillion, respectively, for a total of 530 trillion FLOPs. 
Each step requires significant computational power and the 
simulation would be intractable if not for such enabling 
HPC technologies as MatlabMPI [6] and the LLGrid [7] 
supercomputing system. 
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Results 

 
MatlabMPI is a HPC technology that leverages the Message 
Passing Interface (MPI) standard for parallel computing 
within the Matlab environment.  It was developed to be an 
easy to use technology that incorporates itself almost 
seamlessly with Matlab.  The source code can be found on 
the MatlabMPI website [6].  LLGrid is the grid computing 
system used at MIT Lincoln Laboratory that enables 
individual users easy access to a powerful computing 
cluster.  The LLGrid and MatlabMPI platforms in 
conjunction are particularly suitable to our computational 
needs, as they provide the power of parallel computing in a 
scientist-friendly way. 
 
Parallelizing the NLEQ software over the LLGrid cluster 
significantly reduces the run times.  Figure 2 depicts the 
achieved speedup compared to running on a single 
processor. For reference we show here the ideal linear 
speedup.  Compared to the run time of 35.4 hours on a 
single processor for a small NLEQ simulation run, on 4, 16, 
and 64 processors we can achieve run times of 10.9, 3.9, 
and 1.3 hours, respectively. 

 

 
Figure 2:  Speedup from parallelization vs. the “ideal” linear 

speedup 
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