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Outline
• COTS Heterogeneous systems:

Processors + FPGAs
• Overview of VSIPL++
• VForce framework
• Run-time resource management 
• Current status: 

– hardware platforms, applications
• Future directions



3

www.cray.com/products/xd1/
• Xilinx Virtex 2s paired with AMD

Opteron nodes
• RapidArray interconnect

Cray XD1 SGI RASC
www.sgi.com/products/rasc/
• Xilinx Virtex 2 blades for server 

acceleration
• Numalink interconnect system
• FPGAs have access to globally 

shared system memory

Reconfigurable Supercomputing
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http://www.mc.com/products/
• Interchangeable PPC and FPGA 

daughtercards housed in chassis
• Race++, RapidIO interconnect

Mercury PowerStream

SRC SRC-7
www.srccomp.com/MAPstations.htm
• Different sized systems with MAP 

components (FPGAs), processors, 
memory

• Custom configurations
• Proprietary Hi-Bar network

Heterogeneous Embedded Systems
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HPTi cluster at AFRL

Heterogneous Embedded System and 
SupercomputerStarbridge

Hypercomputer
www.starbridgesystems.com
• Array of FPGAs coupled to a 

single microprocessor via 
PCI-X

• Different, fixed configurations:
– 7, 11 FPGAs

www.if.afrl.af.mil/tech/facilities/HPC/hpcf.html
COTS technology achieves high peak flops
• Nodes combine dual Xeon Linux boards

with Annapolis FPGA boards
• Myrinet interconnect, PCI to FPGA
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Portability for Heterogeneous 
Processing

• All systems contain common elements
– Microprocessors
– Distributed memory
– Special-purpose computing resources

• FPGAs are our focus
• also GPUs, DSPs, ...

– Communication channels
• Currently no support for application portability 

across different platforms
• Redesign required for hardware upgrades, 

move to new architecture
• Focus on commonalities, abstract away differences
• Deliver performance
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What is VSIPL++  ?

• Implementation can be 
optimized for a given 
platform
– run-time performance 

depends on 
implementation

– Different
implementations of 
VSIPL++ are available 
from different vendors

C LIB
PPC

GPP
PPC

VSIPL SAL PPCPERF

USER PROGRAM

VSIPL++

• An open API standard from HPEC-SI
• A library of common signal processing functions

– Data objects interact intuitively with processing objects
– High level interfaces ease development
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VSIPL++ Example: 16 point FFT
#include <vsip/signal.hpp>
using namespace vsip;

int main(int argc, char* argv[])
{

vsipl lib;
Vector<cscalar_f> inData(16);
Vector<cscalar_f> outData(16);  

Fft<const_Vector, cscalar_f, cscalar_f, fft_fwd>
fft_obj(Domain<1>(16), 1.0);

outData = fft_obj(inData);

return(0);
}
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Why VSIPL++ for Reconfigurable 
Systems?

• Focus of VSIPL++ is 
– high performance
– code portability
– end-user productivity

• Parallel VSIPL++ specification support
– mapping applications across

distributed computing elements
• Object-oriented interface makes class

replacements straightforward
• Functions available through VSIPL++ include

proven candidates for reconfigurable hardware 
acceleration
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VForce: Extending VSIPL++
• VForce: a middleware framework 
• adds support for special purpose processors 

(SPP) to VSIPL++
• Programmer uses VSIPL++ processing and data 

objects
– Custom processing objects utilize a generic SPP 

object that interacts with VForce
– SPP object uses SPP implementations when 

available (defaults to software)
• Standard API between processing objects and

hardware resources
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VForce Project Goals
• Existing VSIPL++ programs require little to no 

modification to use special purpose hardware
• Adding support for new hardware platforms is

straightforward
• Hardware and software execute concurrently
• Hardware specific errors are hidden from user
• Platforms with multiple processors and 

special purpose processors are supported
• The framework is flexible to adapt to new 

developments in the VSIPL++ specification
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VForce: Extending VSIPL++
• Sits on top of VSIPL++  

– Implementation Independent
• Custom processing objects:

– Overload a subset of VSIPL++ functions
– Add new higher level functions → SPP's strength

LIBC
PPC

PPC
PPC

VSIPL SAL PPCPERF SPP
SPECIFIC

IMPL.

USER PROGRAM

VSIPL++
SPP VSIPL++
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VForce API
• Generic SPP object implements a 

standard API:
– Move data to and from the Special Purpose 

Processor (SPP)
– Configure algorithm parameters
– Initialize and finalize SPP kernels
– Start processing
– Check interrupt status

• A processing object uses these hardware 
functions to interact with the SPP
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High Level Class Diagram

ProcessingBase

ProcessingBase()
~ProcessingBase()

Fft

Fft()
~Fft()
void operator()()

int scale
bool direction
*Hardware hw

Fir

Fir()
~Fir()
void operator()()

int channels
int taps
*Hardware hw

HardwareBase

HardwareBase()
~HardwareBase()
void PutData()
void GetData()
void KernelInit()
void KernelDest()
void KernelRun()

MCJ6 FCN

WildCardII

Vantage FCN

XD1

Cell SPU ?

VSIPL++
DATA

FCN API

*
*
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Dynamically Loaded Shared Objects 
(DLSO)

• Generic SPP objects are hardware independent
• Use dynamically loaded shared objects(DLSO) 

to control a specific SPP
• Each type of SPP requires a pre-compiled DLSO 

that converts the standard VForce API into 
vendor specific calls

• Separation of hardware concerns from user 
code and from binary until runtime

• Which DLSO and device?
– Determined by a Run Time Resource Manager 

(RTRM)
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Run-time Resource Manager
• The Runtime Resource Manager (RTRM) 

encapsulates machine & vendor 
differences:
– How many and what types of SPPs
– What user code is running where
– Knowledge of available bitstreams, binaries

• SPP object requests a hardware resource 
with a specified application kernel

• Manager returns device and DLSO to use
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Run-time Resource Manager (2)
• The RTRM exists as a separate process
• Important:  communication of data is direct 

from one processing element to another
– Manager does NOT handle data
– Manager does scheduling and allocation of 

tasks
– Performance should not be impacted
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Control and Data Flow

Control
Data
Bitstream

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

API

VSIPL++ Data

Processing Object

Hardware Object

VSIPL++ User Program

APIIPC

Hardware Object
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Control and Data Flow

Control
Data
Bitstream

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

API

VSIPL++ Data

Processing Object

Hardware Object

VSIPL++ User Program

DLSO

DLSO

API

DLSO Library

IPC
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VForce Framework Benefits
• VSIPL++ code easily migrates from one 

hardware platform to another
• Specifics of hardware platform encapsulated in

the manager and DLSOs
• Handles multiple CPUs, multiple FPGAs 

efficiently
• Programmer need not worry about details or

availability of types of processing elements
• Enables run time services: 

– fault-tolerance
– load balancing 
– ...
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VSIPL++ SPP Example: 16 point FFT
#include <hw_fft.hpp>
using namespace vsip;

int main(int argc, char* argv[])
{

vsipl lib;
Vector<cscalar_f> inData(16);
Vector<cscalar_f> outData(16);  

Fft<const_Vector, cscalar_f, cscalar_f, fft_fwd>
fft_obj(Domain<1>(16), 1.0);

outData = fft_obj(inData);

return(0);
}
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Adding New Hardware to VForce
• Need to provide:

– Hardware DLSO
– Processing kernels (bitstreams) to run on the 

hardware
• Drop in replacements for VSIPL++ functions

– Manager must be aware of new hardware
• The new DLSO must implement the 

VForce standard API
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Adding New Processing Objects
• New functions or implementations

– Generate a new processing class
• Use SPP object(s) to control hardware

– Supply kernel with the means to execute the 
algorithm on the special purpose processor

• One-to-many mapping of processing 
objects to SPP executables
– software
– FPGA hardware:  may be several versions
– other types of SPPs
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Platforms Currently Supported
• Annapolis WildCard II, Mercury VantageFCN

– static scheduling mechanism and local run-time resource 
management only

– Asynchronous calls allow for task-level parallelism
– Exception handling hides hardware specific errors

• Mercury 6U VME
– Static scheduling and local RTRM 
– Dynamic scheduling with remote run-time resource manager 

supervision
– Manager allows for multiple VSIPL++ programs to run on the 

same system and share MCJ6 FPGA compute nodes
• Cray XD1

– Dynamic scheduling with remote run-time resource manager 
supervision

– Dynamic loading of shared objects
• No changes to code, 100% portability for applications
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VSIPL++
Program

FFT
object

WildCard II
object

fc2Dvec int[ ]Vector
<csalar_f>

FFT

Fixed-to-
Float

ADC

Data

FPGA

bitstream

Completed Applications: 16 Point FFT
• Small FFT

– A 16 point FFT for proof of concept
– Complex single precision floats converted to fixed point for 

computation in hardware
– FPGA kernel implemented for Annapolis WildCard II, Mercury 

VantageFCN and Mercury 6U VME
– Software ported with minimal code changes

• Small FFT with A/D converter input
– FFT kernel modified to sample data from the WildCard II’s on-

board ADC
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Parameterized FFT Implementation
• Uses parameterized FFT core 

from Xilinx Corelib
• 8 to 32k point FFT
• Matches functionality of the FFT class within 

VSIPL++
– Scaling factor and FFT size adjustable 

after FPGA configuration
• Complex single precision floats in VSIPL++

converted to fixed point for computation in 
hardware

• Dynamic scaling for improved fixed point 
precision

• Implemented for WildCard II and Cray XD1
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Beamformer

• Weights computed periodically 
using QR decomposition
– in software

• Multiply accumulate 
– in hardware

• Sensor data distributed to multiple 
FPGAs with round robin 
scheduling

• Implemented on Mercury 6U VME

• 3-D time-domain beamformer, adaptive weights
• Single precision floating point operators at every stage
• Hybrid hardware/software implementation
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Future Directions
• Support for new platforms

– SGI RASC
– SRC SRC-7
– GPUs, DSPs, CELL SPEs

• Move beyond master-slave model of 
processing and communication
– FPGA to FPGA communication not currently 

implemented
• Implement more complex processing

kernels, applications
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Conclusions

• VForce provides a framework for 
implementing high performance 
applications on heterogeneous processors
– Code is portable
– Support for a wide variety of hardware 

platforms
– VSIPL++ Programmer can take advantage of 

new architectures without changing 
application programs 
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Thank you

• Contact:       mel@coe.neu.edu
• VForce:

http://www.ece.neu.edu/groups/rcl/project/
vsipl/vsipl.html

• Reconfigurable Computing Lab @ NU
http://www.ece.neu.edu/groups/rcl/


