
Miriam Leeser
Nicholas Moore, Albert Conti

Department of Electrical and Computer Engineering
Northeastern University, Boston MA

Laurie Smith King
Department of Mathematics and Computer Science

College of the Holy Cross, Worcester MA

VFORCE: VSIPL++ for Reconfigurable
Computing Environments

2

Outline
• COTS Heterogeneous systems:

Processors + FPGAs
• Overview of VSIPL++
• VForce framework
• Run-time resource management
• Current status:

– hardware platforms, applications
• Future directions

3

www.cray.com/products/xd1/
• Xilinx Virtex 2s paired with AMD

Opteron nodes
• RapidArray interconnect

Cray XD1 SGI RASC
www.sgi.com/products/rasc/
• Xilinx Virtex 2 blades for server

acceleration
• Numalink interconnect system
• FPGAs have access to globally

shared system memory

Reconfigurable Supercomputing

4

http://www.mc.com/products/
• Interchangeable PPC and FPGA

daughtercards housed in chassis
• Race++, RapidIO interconnect

Mercury PowerStream

SRC SRC-7
www.srccomp.com/MAPstations.htm
• Different sized systems with MAP

components (FPGAs), processors,
memory

• Custom configurations
• Proprietary Hi-Bar network

Heterogeneous Embedded Systems

5

HPTi cluster at AFRL

Heterogneous Embedded System and
SupercomputerStarbridge

Hypercomputer
www.starbridgesystems.com
• Array of FPGAs coupled to a

single microprocessor via
PCI-X

• Different, fixed configurations:
– 7, 11 FPGAs

www.if.afrl.af.mil/tech/facilities/HPC/hpcf.html
COTS technology achieves high peak flops
• Nodes combine dual Xeon Linux boards

with Annapolis FPGA boards
• Myrinet interconnect, PCI to FPGA

6

Portability for Heterogeneous
Processing

• All systems contain common elements
– Microprocessors
– Distributed memory
– Special-purpose computing resources

• FPGAs are our focus
• also GPUs, DSPs, ...

– Communication channels
• Currently no support for application portability

across different platforms
• Redesign required for hardware upgrades,

move to new architecture
• Focus on commonalities, abstract away differences
• Deliver performance

7

What is VSIPL++ ?

• Implementation can be
optimized for a given
platform
– run-time performance

depends on
implementation

– Different
implementations of
VSIPL++ are available
from different vendors

C LIB
PPC

GPP
PPC

VSIPL SAL PPCPERF

USER PROGRAM

VSIPL++

• An open API standard from HPEC-SI
• A library of common signal processing functions

– Data objects interact intuitively with processing objects
– High level interfaces ease development

8

VSIPL++ Example: 16 point FFT
#include <vsip/signal.hpp>
using namespace vsip;

int main(int argc, char* argv[])
{

vsipl lib;
Vector<cscalar_f> inData(16);
Vector<cscalar_f> outData(16);

Fft<const_Vector, cscalar_f, cscalar_f, fft_fwd>
fft_obj(Domain<1>(16), 1.0);

outData = fft_obj(inData);

return(0);
}

9

Why VSIPL++ for Reconfigurable
Systems?

• Focus of VSIPL++ is
– high performance
– code portability
– end-user productivity

• Parallel VSIPL++ specification support
– mapping applications across

distributed computing elements
• Object-oriented interface makes class

replacements straightforward
• Functions available through VSIPL++ include

proven candidates for reconfigurable hardware
acceleration

10

VForce: Extending VSIPL++
• VForce: a middleware framework
• adds support for special purpose processors

(SPP) to VSIPL++
• Programmer uses VSIPL++ processing and data

objects
– Custom processing objects utilize a generic SPP

object that interacts with VForce
– SPP object uses SPP implementations when

available (defaults to software)
• Standard API between processing objects and

hardware resources

11

VForce Project Goals
• Existing VSIPL++ programs require little to no

modification to use special purpose hardware
• Adding support for new hardware platforms is

straightforward
• Hardware and software execute concurrently
• Hardware specific errors are hidden from user
• Platforms with multiple processors and

special purpose processors are supported
• The framework is flexible to adapt to new

developments in the VSIPL++ specification

12

VForce: Extending VSIPL++
• Sits on top of VSIPL++

– Implementation Independent
• Custom processing objects:

– Overload a subset of VSIPL++ functions
– Add new higher level functions → SPP's strength

LIBC
PPC

PPC
PPC

VSIPL SAL PPCPERF SPP
SPECIFIC

IMPL.

USER PROGRAM

VSIPL++
SPP VSIPL++

13

VForce API
• Generic SPP object implements a

standard API:
– Move data to and from the Special Purpose

Processor (SPP)
– Configure algorithm parameters
– Initialize and finalize SPP kernels
– Start processing
– Check interrupt status

• A processing object uses these hardware
functions to interact with the SPP

14

High Level Class Diagram

ProcessingBase

ProcessingBase()
~ProcessingBase()

Fft

Fft()
~Fft()
void operator()()

int scale
bool direction
*Hardware hw

Fir

Fir()
~Fir()
void operator()()

int channels
int taps
*Hardware hw

HardwareBase

HardwareBase()
~HardwareBase()
void PutData()
void GetData()
void KernelInit()
void KernelDest()
void KernelRun()

MCJ6 FCN

WildCardII

Vantage FCN

XD1

Cell SPU ?

VSIPL++
DATA

FCN API

*
*

15

Dynamically Loaded Shared Objects
(DLSO)

• Generic SPP objects are hardware independent
• Use dynamically loaded shared objects(DLSO)

to control a specific SPP
• Each type of SPP requires a pre-compiled DLSO

that converts the standard VForce API into
vendor specific calls

• Separation of hardware concerns from user
code and from binary until runtime

• Which DLSO and device?
– Determined by a Run Time Resource Manager

(RTRM)

16

Run-time Resource Manager
• The Runtime Resource Manager (RTRM)

encapsulates machine & vendor
differences:
– How many and what types of SPPs
– What user code is running where
– Knowledge of available bitstreams, binaries

• SPP object requests a hardware resource
with a specified application kernel

• Manager returns device and DLSO to use

17

Run-time Resource Manager (2)
• The RTRM exists as a separate process
• Important: communication of data is direct

from one processing element to another
– Manager does NOT handle data
– Manager does scheduling and allocation of

tasks
– Performance should not be impacted

18

Control and Data Flow

Control
Data
Bitstream

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

API

VSIPL++ Data

Processing Object

Hardware Object

VSIPL++ User Program

APIIPC

Hardware Object

19

Control and Data Flow

Control
Data
Bitstream

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

API

VSIPL++ Data

Processing Object

Hardware Object

VSIPL++ User Program

DLSO

DLSO

API

DLSO Library

IPC

20

VForce Framework Benefits
• VSIPL++ code easily migrates from one

hardware platform to another
• Specifics of hardware platform encapsulated in

the manager and DLSOs
• Handles multiple CPUs, multiple FPGAs

efficiently
• Programmer need not worry about details or

availability of types of processing elements
• Enables run time services:

– fault-tolerance
– load balancing
– ...

21

VSIPL++ SPP Example: 16 point FFT
#include <hw_fft.hpp>
using namespace vsip;

int main(int argc, char* argv[])
{

vsipl lib;
Vector<cscalar_f> inData(16);
Vector<cscalar_f> outData(16);

Fft<const_Vector, cscalar_f, cscalar_f, fft_fwd>
fft_obj(Domain<1>(16), 1.0);

outData = fft_obj(inData);

return(0);
}

22

Adding New Hardware to VForce
• Need to provide:

– Hardware DLSO
– Processing kernels (bitstreams) to run on the

hardware
• Drop in replacements for VSIPL++ functions

– Manager must be aware of new hardware
• The new DLSO must implement the

VForce standard API

23

Adding New Processing Objects
• New functions or implementations

– Generate a new processing class
• Use SPP object(s) to control hardware

– Supply kernel with the means to execute the
algorithm on the special purpose processor

• One-to-many mapping of processing
objects to SPP executables
– software
– FPGA hardware: may be several versions
– other types of SPPs

24

Platforms Currently Supported
• Annapolis WildCard II, Mercury VantageFCN

– static scheduling mechanism and local run-time resource
management only

– Asynchronous calls allow for task-level parallelism
– Exception handling hides hardware specific errors

• Mercury 6U VME
– Static scheduling and local RTRM
– Dynamic scheduling with remote run-time resource manager

supervision
– Manager allows for multiple VSIPL++ programs to run on the

same system and share MCJ6 FPGA compute nodes
• Cray XD1

– Dynamic scheduling with remote run-time resource manager
supervision

– Dynamic loading of shared objects
• No changes to code, 100% portability for applications

25

VSIPL++
Program

FFT
object

WildCard II
object

fc2Dvec int[]Vector
<csalar_f>

FFT

Fixed-to-
Float

ADC

Data

FPGA

bitstream

Completed Applications: 16 Point FFT
• Small FFT

– A 16 point FFT for proof of concept
– Complex single precision floats converted to fixed point for

computation in hardware
– FPGA kernel implemented for Annapolis WildCard II, Mercury

VantageFCN and Mercury 6U VME
– Software ported with minimal code changes

• Small FFT with A/D converter input
– FFT kernel modified to sample data from the WildCard II’s on-

board ADC

26

Parameterized FFT Implementation
• Uses parameterized FFT core

from Xilinx Corelib
• 8 to 32k point FFT
• Matches functionality of the FFT class within

VSIPL++
– Scaling factor and FFT size adjustable

after FPGA configuration
• Complex single precision floats in VSIPL++

converted to fixed point for computation in
hardware

• Dynamic scaling for improved fixed point
precision

• Implemented for WildCard II and Cray XD1

27

Beamformer

• Weights computed periodically
using QR decomposition
– in software

• Multiply accumulate
– in hardware

• Sensor data distributed to multiple
FPGAs with round robin
scheduling

• Implemented on Mercury 6U VME

• 3-D time-domain beamformer, adaptive weights
• Single precision floating point operators at every stage
• Hybrid hardware/software implementation

28

Future Directions
• Support for new platforms

– SGI RASC
– SRC SRC-7
– GPUs, DSPs, CELL SPEs

• Move beyond master-slave model of
processing and communication
– FPGA to FPGA communication not currently

implemented
• Implement more complex processing

kernels, applications

29

Conclusions

• VForce provides a framework for
implementing high performance
applications on heterogeneous processors
– Code is portable
– Support for a wide variety of hardware

platforms
– VSIPL++ Programmer can take advantage of

new architectures without changing
application programs

30

Thank you

• Contact: mel@coe.neu.edu
• VForce:

http://www.ece.neu.edu/groups/rcl/project/
vsipl/vsipl.html

• Reconfigurable Computing Lab @ NU
http://www.ece.neu.edu/groups/rcl/

