

VFORCE: VSIPL++ for Reconfigurable Computing Environments
Albert Conti, Nicholas Moore, Miriam Leeser

{aconti, nmoore, mel}@ece.neu.edu
Dept. of Electrical and Computer Engineering

Northeastern University, Boston, MA

Laurie Smith King
lking@holycross.edu

Dept. of Computer Science and Mathematics
College of the Holy Cross, Worcester, MA

VSIPL++ (the Vector/Signal/Image Processing Library) is a
collection of object-oriented interfaces to commonly used
signal processing algorithms, such as the Fast Fourier
Transform and FIR filters [1]. A reference implementation
for VSIPL++ is available. Vendors can provide their own
implementations that run efficiently on their platforms
while still maintaining portability. Up until now, this
approach has been limited to software implementations.
However, many signal processing algorithms run much
faster when implemented in reconfigurable hardware or on
other heterogeneous processing elements.

The goal of this project is to make hardware
implementations for signal processing algorithms
seamlessly available to the VSIPL++ programmer. In
VSIPL++, the programmer interacts with processing objects
that realize algorithms in software. We extend this model
by allowing a processing object to refer to a specialized
hardware implementation. We interpose a hardware object
that abstracts details of programming the actual hardware
and transferring data. No detailed knowledge of the
hardware is required of the programmer so development
time decreases while code portability increases. Our
approach works with many types of heterogeneous
processing. In this abstract we focus on the FPGA
platforms that we are targeting.

Project Design Goals
We are designing a framework that extends VSIPL++ to
add support for special purpose hardware implementations.
Our framework supports the following design goals:

• Existing VSIPL++ programs require only a small
amount of modification to use hardware
acceleration.

• Adding support for new hardware platforms is
straightforward via a modular backend.

• Support for concurrency allows hardware and
software functions to run in parallel.

• Hardware specific errors are masked; the
VSIPL++ programmer does not need to write
hardware specific exception handling code.

• Platforms with multiple processors and multiple
FPGAs are supported.

• The framework is flexible enough to adapt to new
developments in the VSIPL++ specification, such
as support for parallel programming.

Processing Framework
Our framework is shown in Figure 1. In VSIPL++, the
programmer interacts with processing objects that realize
algorithms in software. In our framework, the programmer
still works with processing objects, but in addition to
running in software, the computation can also be run on a
FPGA. This is facilitated by the introduction of hardware
objects that encapsulate the hardware specific information
and manage communication and control of the FPGAs.
Every FPGA board has its own hardware class that is
derived from the same virtual base class. The base class
defines a common interface for all hardware objects. A
particular FPGA board’s hardware class contains all of the
vendor and model specific information needed to
communicate with its corresponding FPGA, including the
necessary APIs and bitstream locations and characteristics.
The FPGA box shown at the upper right in Figure 1
represents the reconfigurable hardware itself.

Processing Kernel Library

Manager

Runtime Resource Manager

FPGA

Processing
Kernel

IPC API

Control
Data
Bitstream

VSIPL++ Data

Processing Object

API

Hardware Object

VSIPL++ User Program

Figure 1: Processing Object Framework

Distributed Processing: Our framework incorporates a Run
Time Resource Manager (RTRM) shown at the bottom of
Figure 1. The RTRM exists as a separate program, either
run on a separate CPU or as a distinct process in a
multitasking environment. The RTRM maintains the pool
of available reconfigurable hardware in a shared

environment and distributes them to VSIPL++ applications
upon request. The manager controls access to shared
hardware and brokers the assignment of tasks to particular
FPGA hardware. To minimize overhead, the manager is
involved only during the request of processing resources
and during initialization of the reconfigurable hardware.
The RTRM is not involved during computation or data
transfer. If no reconfigurable hardware is available that can
perform the requested algorithm, the RTRM will respond
appropriately so that the processing object can transparently
default to performing the computation in software.

The RTRM encapsulates the platform specific information
in a system, and keeps track of the resources available and
their status. In addition, the RTRM may use knowledge of
the environment, profiling, or any other means to make
optimal decisions about hardware allocation.

Error Handling: The processing/hardware class hierarchy
contains an exception handling mechanism. If there is an
error when dealing with the FPGA, the processing object
catches the error and will transparently default to running
the given algorithm in software through the matching
VSIPL++ function. The processing class will throw
exceptions to the application programmer in the same
situations that VSIPL++ would.

Concurrency: The VSIPL++ standard does not currently
support concurrency. Our processing class contains the
VSIPL++ method that blocks until the computation is
complete to respect the VSIPL++ specification. In addition,
three methods not present in standard VSIPL++ objects
were added to achieve a level of concurrency. The first two
new methods, start and status, are non-blocking and allow
the software to initiate the FPGA computation and poll for
completion respectively. The finish method blocks until it
can retrieve the output of the FPGA computation. These
methods permit but do not require a VSIPL++ programmer
to take advantage of the performance increases that can be
obtained when the CPU continues to work while an FPGA
computation is running.

Current Status
Our initial work was a simplified version of the framework
that did not include the resource manager. The goal was to
demonstrate that the same application could easily be
adapted to several different hardware platforms. This first
version implements a master/slave model with a general
purpose processor (GPP) acting as a master, and the FPGA
hardware as the slave. The GPP provided the functionality
of the VSIPL++ calling program as well as the RTRM.

Initially, a demo consisting of a 16-point FFT algorithm
class was implemented using VSIPL++ software. Next, a
hardware class and a 16-point FFT bitstream were
developed for the Annapolis Wildcard II FPGA board [2],
and the demo application was adapted to use the Wildcard
II implementation.

A second hardware class was created to support a Mercury
VantageRT FCN board class with a 16-point FFT bitstream.
To use the Mercury VantageRT FCN board [3], the demo

code only required changes to include the appropriate
header and the instantiation of the Mercury VantageRT
hardware object instead of the Annapolis Wildcard II
hardware object. The hardware is requested explicitly by
user code that passes the processing object as a constructor
argument. A generalized FFT processing class was also
developed. To match the use of VSIPL++ classes, the FFT
processing class uses the same template parameters and
includes all of the VSIPL++ FFT’s methods. The hardware
constructor differs in that it includes an extra argument: a
handle to a specific FPGA.

Our new framework supports more general hardware
models than the simplified version. Multiple GPPs and
multiple FPGAs can now be supported in addition to the
simpler, master/slave model. The user program no longer
needs to request a specific hardware object, but requests a
generic hardware implementation. Hardware classes for the
Mercury MCJ6 FCN [3] and the Cray XD1 [4] are under
development. For the Mercury hardware class, FPGAs are
allocated by the RTRM on a first come, first served basis.

Future Work
The proposed processing framework has been shown to be
effective for harnessing FPGA resources in an environment
where one VSIPL++ program accesses a predetermined
FPGA resource. We will continue to add more drop-in
replacements for processing algorithms, as well as
additional hardware classes and bitstreams. Hardware
classes for the SGI RASC [5] and possibly the
IBM/Sony/Toshiba Cell processor [6] are planned.

Future work also includes a more fully realized
implementation of the RTRM and removing programmer
involvement in hardware allocation altogether. Whereas
today a few simple changes in headers and constructor calls
are required to use a different hardware class, we plan to
move towards using different hardware dynamically based
on availability with no application level coding changes
required. Requests to the RTRM could be serviced by
returning a generic hardware pointer as well as a reference
to a dynamically loaded library that contains the code
needed to map the processing object requests onto the
specific hardware API. This would achieve our goal of
making the VSIPL++ code portable while providing high
performance.

References
[1] http://www.hpec-si.org/

[2] http://www.annapmicro.com/wc2.html

[3] http://www.mc.com/products/boards.cfm?prodtype=boards

[4] http://www.cray.com/products/xd1/index.html

[5] http://www.sgi.com/products/rasc/

[6] J. A. Kahle, M. N. Day, et al., "Introduction to the Cell
multiprocessor,” IBM Journal of Research and Development,
49:4/5, 2005.

