
www.exegy.com

Exploiting Reconfigurability
for Text Search

Roger D. Chamberlain, Mark A. Franklin, and Ron S. Indeck
Exegy Inc.



Exegy TextMiner

Highly Optimized 
Data Pipeline from 
Input thru Output

Specialized 
Processing in Close 

Proximity to Data

1-7 TB fast RAID;
RAM / FPGA 
contiguous



Specialized Processing on Custom Board

FPGA accelerated custom board

• Permits massively parallel operations

• Offloads work from CPU

• Integrates with other system 
components enabling high-speed 
data ingress and egress

• Designed with common APIs to give 
user control of functionality

• Draws from a library of pre-defined 
modules used to perform certain 
operations

• New functional modules readily 
incorporated

Analogous to graphic accelerator cards



Exegy A2000 Appliance

processordisk
controller

disk
data

to
processor

configuration
subsystem

reconfigurable
logic

network



TextMiner Application

• Searching through an unindexed text corpus 
for items of interest

• Example query
(Cardinals NEAR[200] Baseball) AND

(Manchester NEAR[200] Soccer)
“Cardinals” within 200 characters of “Baseball” and
“Manchester” within 200 characters of “Soccer”

• Supported combining operators include
Boolean: AND, OR, NOT
Proximity: NEAR, ANDTHEN



Benefits of reconfiguration

formulate
initial
query



Benefits of reconfiguration

formulate
initial
query



Benefits of reconfiguration

formulate
initial
query

analyze
query
results



Benefits of reconfiguration

formulate
revised
query

analyze
query
results



Query Options

Exact Search
Literal keywords must match exactly
Tens of thousands of keywords searched in one 
pass across the data

Approximate Search
Wildcard characters
Case insensitivity
Character substitution up to specified bound

Regular Expression Search
Full expressive power of finite-state machine 
recognizer



Exact Match Engine

Startup
Hash keywords to a bit vector in FPGA
Rabin-Karp hash functions

Run
Stream text corpus from disk or network to FPGA
Hash text to bit vector position
Check position for keyword hit

Check
False positives from hash collisions checked in 
software



Approximate Match Engine

• Data shift register 
receives inbound text

• Compared with keyword 
at character level

• Count of matching 
characters is checked 
with threshold

• If character matches 
exceed threshold, 
keyword is a match

h o r s e

h o u s e

= = = =

compare
register

fine-grain
comparison

data shift register

count (4)

input
data

word-level
comparison

> threshold?

match signal

≠



Regular Expression Engine

symbol encoding addr.
logic

state
selection

logic

current
state

regular expression compiler

in
di

re
ct

io
n 

ta
bl

e

tra
ns

itio
n 

ta
bl

e

in
pu

t
da

ta

match signal



Regular Expression Engine

• Multi-character strings are combined into single 
symbol for finite state machine recognizer

symbol encoding addr.
logic

state
selection

logic

current
state

regular expression compiler

in
di

re
ct

io
n 

ta
bl

e

tra
ns

itio
n 

ta
bl

e

in
pu

t
da

ta

match signal



Regular Expression Engine

• Multi-character strings are combined into single 
symbol for finite state machine recognizer

• State dependent transitions are deferred to end of 
pipeline

symbol encoding addr.
logic

state
selection

logic

current
state

regular expression compiler

in
di

re
ct

io
n 

ta
bl

e

tra
ns

itio
n 

ta
bl

e

in
pu

t
da

ta

match signal



Combining Operations

• Combining operations implemented in software
• Based on keyword hits from FPGA

NEAR NEAR

AND

Cardinals SoccerManchesterBaseball

(Cardinals NEAR Baseball) AND (Manchester NEAR Soccer)



Summary of 3 Hardware Search Engines

• Searching for individual terms, combining 
operations performed in software

• Three distinct engines supported:
Exact match

Thousands of terms, 800 MB/s search rate
Approximate match

Can trade off # of terms vs. characters per term, 
800 MB/s search rate

Regular expression search
Capable of ~50 expressions, 400 MB/s search rate

• Data source(s) can be local or remote



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Managing FPGA Configuration



Manage Configuration Store
On-board non-volatile storage for configurations
Supports multiple configuration files

Manage Directory
Meta-data for configurations in configuration store

Load FPGA as instructed
Reconfigure FPGA from specified config file 
currently in configuration store

Protection
Block data path during reconfiguration
Check configuration is appropriate for that FPGA

Supervisor Functions



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Software Options: Insert

Place a configuration in the on-board store



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Software Options: Insert

Place a configuration in the on-board store



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Read Directory

Query current directory contents



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Read Directory

Query current directory contents



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Read Configuration

Primarily for verification and debugging purposes



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Read Configuration

Primarily for verification and debugging purposes



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Load

Reconfigure FPGA



Configuration
Files

User Data

Supervisor
CPLD

Configuration
Store Directory Application

FPGA(s)

Results

Load

Reconfigure FPGA



Back to Text Search Application

Sequence of events:
1. User provides query and initiates search
2. Examining search terms, software selects 

appropriate engine
3. Load configuration in FPGA, concurrently 

queue up data from source
4. Load search terms into engine
5. Stream data through engine
6. Process hits that return, performing 

combining operations
7. Return results to user



Comments

Benefits
• Application software chooses appropriate 

FPGA engine
• Engine is tailored to problem at hand
Concerns
• Heterogeneous query

Requires multiple engines or multiple data passes
• Configuration overhead

20 ms is longer than we would like
However, it’s not out of line with startup times 
required for disk access



Summary

• Exegy A2000 appliance supports dynamic 
reconfiguration of application FPGAs

• Exegy TextMiner application exploits dynamic 
reconfiguration for text search

• 3 distinct search engines: exact, approximate, 
and regular expression

• FPGA configuration is concurrent with initial 
data reads to mask latency

• Result is a true exploitation of the physical 
ability to reconfigure FPGAs on the fly


