
Exploiting Reconfigurability for Text Search
Roger D. Chamberlain, Mark A. Franklin, Ronald S. Indeck

Exegy Inc., St. Louis, MO
{rchamberlain,mfranklin,rindeck}@exegy.com

Introduction1

Since their inception, it has been clear that, in principal,
FPGAs can be reconfigured at will; that is, whenever
desired. In practice, however, this capability is rarely used.
Typically, during application development new
configurations are regularly loaded and tested. As part of
support operations, new versions of applications are loaded
into on-board non-volatile storage and used to alter FPGA
configuration at the next reboot. Beyond this, however,
there is little production use of the ability to reconfigure
modern FPGAs.

At Exegy Inc., we have constructed a network-attached
appliance that exploits frequent FPGA reconfiguration as its
regular mode of operation. When an application is invoked,
the appropriate configuration is loaded into the FPGA. In
addition, which configuration is appropriate is not simply a
function of the application itself, but is also a function of
the parameters provided to the application. Here, we
describe the practical utility of regular FPGA
reconfiguration in response to user needs.

The Exegy A2000 Appliance
Exegy Inc., in collaboration with Washington University in
St. Louis, has developed the A2000 appliance [1,2], a
network appliance that provides network-attached storage
augmented with a high-performance, application-level
computing capability.

Figure 1 illustrates the internal architecture of an individual
appliance. Data flows off the disks into an FPGA. The
FPGA provides reconfigurable logic that has its function
specified via HDL. Results of the processing performed on
the FPGA are delivered to the processor. By delivering the
high-volume data directly to the FPGA, the processor can
be relieved of the requirement of handling the bulk of the
original data set.

processordisk
controller

disk
data

to
processor

configuration
store

reconfigurable
logic

network

Figure 1: Exegy appliance architecture

The authors are on leave from Washington University in St. Louis at
Exegy Inc., www.exegy.com

Associated with the reconfigurable logic is a configuration
store that maintains a fixed number of FPGA
configurations. This configuration store is managed by
software, with the ability to insert configurations into the
store, read configurations from the store, and load
configurations from the store into the FPGA. While the
insert operation is slower (due to the limitations of the flash
memory used for non-volatile storage), the read and load
operations require only 20 ms to complete. This is
comparable to disk operation times associated with seeking
and/or rotational latency.

Text Search Application
A commercial product that runs on the A2000 appliance is
Exegy TextMiner Version 1.2. TextMiner supports text
search on unindexed bulk data sets at rates of 600 MB/s or
greater from the on-board data store, 400 MB/s from an
attached SAN, or 800 MB/s from a 10 GigE network.
Search functions include exact matching, approximate
matching, regular expression matching, and combining
operations. On the appliance, the three alternative matching
operations are deployed on the FPGA with the combining
operations taking place on the general-purpose processor.

Exact match. The exact matching operations are based
upon Rabin-Karp theory [3]. The algorithm is as follows.
The keywords of interest are hashed into a bit-vector
position. Text to be searched is then hashed and the
resulting bit-vector position is checked for the presence of a
keyword. On a hit, there is either a keyword match or a
hashing collision. In either event, the hit is delivered from
the FPGA to the processor where software determines
whether a true positive keyword match or a false positive
hashing collision has occurred.

The exact match search engine can search for tens of
thousands of keywords in a single pass over the data set.
With an ingest capability of 8 characters per clock and
running at 100 MHz, a single engine can support a
throughput rate of 800 MB/s.

Approximate match. With approximate matching [4],
keywords in a query can be specified with a number k of
allowed character substitutions or miss-matches. Keywords
can be specified to be either case sensitive or case
insensitive. Also, individual characters in a keyword can be
designated as “don’t care” and will match any character.

The approximate match search engine is illustrated in
Figure 2. Input data flows through a shift register at the top
of the figure. Keywords are stored in a set of compare
registers. Fine-grain comparison logic determines whether
there is a match at the character level. This includes bit-
masking capability to support wildcarding (e.g., don’t
cares) and case insensitivity. The count of character
matches out of the fine-grain comparison logic is checked

mailto:rchamberlain@exegy.com
malto:mfranklin@exegy.com
mailto:rindeck@exegy.com

against a threshold in the word-level comparison logic and
a match signal is asserted if the requisite number of
character matches is detected. In the example of the figure,
the keyword “house” will match the data “horse” if k = 1
(the number of allowed character substitutions is one).

h o r s e

h o u s e

= = = =

compare
register

fine-grain
comparison

data shift register

count (4)

input
data

word-level
comparison

> threshold?

match signal

≠

Figure 2: Approximate match search engine

The approximate match search engine supports tens of
keywords being searched in a single pass over the data set.
With an ingest capability of 8 characters per clock and
running at 100 MHz, a single engine can support a
throughput rate of 800 MB/s.

Regular expression match. The algorithm for regular
expression matching operations [5] uses a novel pipelining
strategy that defers state-dependent logic to the last stage,
enabling single-cycle state transitions (Figure 3). A regular
expression compiler is used to encode contiguous strings of
m input characters and compress the transition table through
indirection.

symbol encoding addr.
logic

state
selection

logic

current
state

regular expression compiler

in
di

re
ct

io
n

ta
bl

e

tra
ns

itio
n

ta
bl

e

in
pu

t
da

ta

match signal

Figure 3: Regular expression search engine

The regular expression search engine supports 50 regular
expressions and has an ingest capability of 4 characters per
clock. Running at 100 MHz, the throughput is 400 MB/s.

Combining operations. While each of the above search
engines has a distinct architecture and associated FPGA
configuration, upon a keyword match each returns both the
match and match position. Software on the processor is
then used to resolve the combining operations including the
Boolean operators AND, OR, and NOT as well as
proximity operators NEAR and ANDTHEN. The operators
AND, OR, and NOT perform their traditional Boolean logic
functions at the file level. The operator NEAR is equivalent
to AND with the additional constraint that the matching

keywords must be within a given distance of one another in
the file. The operator ANDTHEN is equivalent to NEAR
with the additional constraint that the first keyword must
occur earlier in the file than the second keyword.

By way of illustration [2] the query:

 ((Bush NEAR[200] Baseball) AND
 (Blair NEAR[200] Soccer))

expresses the following conditions: (1) the string ”Bush” is
found within 200 characters of the string ”Baseball”; (2) the
string ”Blair” is found within 200 characters of the string
”Soccer”; and (3) both conditions (1) AND (2) hold.

FPGA Reconfiguration
Each time that a search is invoked by the user, the type of
search requested is determined from the query: exact,
approximate, or regular expression. At this point, the
appropriate configuration for the FPGA is loaded from the
configuration store. This is done in parallel with the initial
data set read operations (directory lookup, file open, initial
data queuing, etc.) that also operate at millisecond time
scales. In this way a set of applications can be prepositioned
to quickly begin executing on the FPGA as they are needed
and the constraints associated with limited FPGA capacity
are overcome.

Conclusions
We describe the use of FPGA reconfiguration to support
application requirements greater than the traditionally
exploited revision update function. Based upon the
parameters specified to a text search application, different
configurations are loaded into the FPGA and executed,
actually reconfiguring the reconfigurable logic on a regular
basis and thus providing support for a set of functions that
can quickly initiate execution.

References
[1] R. D. Chamberlain, R. K. Cytron, M. A. Franklin, and R. S.

Indeck, “The Mercury System: Exploiting Truly Fast
Hardware for Data Search,” in Proc. of Int’l Workshop on
Storage Network Architecture and Parallel I/Os, pp. 65-72,
September 2003.

[2] M. A. Franklin, R. D. Chamberlain, M. Henrichs, B. Shands,
and J. White, “An Architecture for Fast Processing of Large
Unstructured Data Sets,” in Proc. of 22nd Int’l Conf. on
Computer Design, pp. 280-287, October 2004.

[3] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-
matching algorithms,” IBM Journal of Research and
Development 31(2):249-260, March 1987.

[4] Q. Zhang, R. D. Chamberlain, R. S. Indeck, B. West, and J.
White, “Massively Parallel Data Mining Using
Reconfigurable Hardware: Approximate String Matching,” in
Proc. of Workshop on Massively Parallel Processing, April
2004.

[5] B. C. Brodie, R. K. Cytron, and D. E. Taylor, “A Scalable
Architecture For High-Throughput Regular-Expression
Pattern Matching,” in Proc. of 33rd Int’l Symp. on Computer
Architecture, June 2006.

