

Probabilistic CMOS Technology for Embedded Cognitive Applications*

Bilge Akgul *Lakshmi Narasimhan Chakrapani* Krishna V Palem

Center for Research on Embedded Systems and Technology Georgia Institute of Technology

*This work was supported in part by DARPA under contract #F30602-02-2-0124, by the DARPA ACIP program under contract #FA8650-04-C-7126 through a subcontract from USC-ISI and by an award from Intel corporation.

Contributions

- Computing platforms based on devices with probabilistic behavior
 - Computing platforms are not only noise tolerant but harness statistical behavior to compute
- Orders of magnitude savings in energy and performance at the application level
 - Enable the implementation of complex cognitive and probabilistic applications

 Higher quality-of-solution for cognitive and probabilistic applications

- By harnessing naturally probabilistic substrates
- ✓Application analysis and optimization methodology
- Metrics for evaluating and characterizing computing platforms based on *Probabilistic* CMOS technology
- Experimental methodology for performance evaluation of computing platforms based on *Probabilistic* CMOS technology

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

Role of Probability in Cognitive Applications

GEORGI

- Probabilistic Algorithms find widespread use in cognitive applications
 - Probabilistic models of human reasoning
 - Bayesian model, randomized neural network model
 - Ability to generate good execution instances for arbitrarily chosen problem instances
 - Good execution for all problem instances
 - Ability for rapid and uniform exploration of search space
 - Heuristic optimization, heuristic search techniques

Historical benefits

- Rapid execution
- Good quality of solution

Outline

GEORGIA TECH

CREST

Role of Probability in Cognitive Applications

- Probabilistic model of human reasoning
- Good execution instances for arbitrary problem instances
- Rapid exploration of search space

Probabilistic Models of Human Reasoning: An Example

- Bayesian inference finds widespread use in probabilistic cognitive applications
 - Probabilities are interpreted as "degree of belief" in a hypothesis
 - Infer a hypothesis based on "evidence"

CREST

GEORGI

- Can be performed using a Bayesian Network
- A Bayesian network is a directed acyclic graph
 - Nodes represent variables, edges represent dependence relationship between the variables
- A node *infers* a value based on the values of its parents and an associated conditional distribution
 - Different network topologies and conditional distributions can solve different problems

Hypothesis: 2

Outline

GEORGIA TECH

CREST

Role of Probability in Cognitive Applications

- Probabilistic model of human reasoning
- Good execution instances for arbitrary problem instances
- Rapid exploration of search space

The Problem

Inputs

- A dictionary of n vectors
- An input vector v_0
- A distance metric *f*(*v*, *v*₀)
- Problem
 - find k vectors from n which are closest to v₀

CREST at GEORGIA TECH

Rapid Exploration of Search Space - An Example

The Problem

Inputs

- A dictionary of *n* vectors
- An input vector v_0
- A distance metric *f*(*v*, *v*₀)
- Problem
 - find k vectors from n which are closest to v₀

Input vector v₀

Dictionary of *n* vectors

CREST at GEORGIA TECH

Rapid Exploration of Search Space - An Example

The Problem

Inputs

- A dictionary of n vectors
- An input vector v_0
- A distance metric *f*(*v*, *v*₀)
- Problem
 - find k vectors from n which are closest to v₀

• 4 vectors which are closest to v₀

• Input vector v_0

(for k = 4)

Dictionary of *n* vectors

The Problem

- Inputs
 A dictionary of n vectors
 - An input vector v_o
 - A distance metric *f*(*v*, *v*₀)
- Problem
 - find k vectors from n which are closest to v₀

Dictionary of *n* vectors

- Input vector v_0
 - 4 vectors which are closest to v_0 (for k = 4)

• Input vector v_0

The Problem

- Inputs
 A dictionary of n vectors
 - An input vector v_0
 - A distance metric f(v, v_o)
- Problem
 - find k vectors from n which are closest to v₀

Dictionary of *n* vectors

- Input vector v₀
 - 4 vectors which are closest to v_0 (for k = 4)

A Probabilistic Algorithm

• Input vector v_o

Randomly selected vector

Dictionary of *n* vectors

Select *m* vectors at random

The Problem

- Inputs
 A dictionary of n vectors
 - An input vector v_0
 - A distance metric *f*(*v*, *v*₀)
- Problem
 - find k vectors from n which are closest to v₀

Dictionary of *n* vectors

- Input vector v₀
 - 4 vectors which are closest to v_0 (for k = 4)

A Probabilistic Algorithm

• Input vector v_o

- Randomly selected vector
- \bigcirc *d*th closest vector *v*_d

Dictionary of *n* vectors

- Select *m* vectors at random
- Select *dth* closest vector to *v₀*, (*v_d*) from the set *m*

The Problem

- Inputs
 A dictionary of n vectors
 - An input vector v_o
 - A distance metric f(v, v_o)
- Problem
 - find k vectors from n which are closest to v₀

Dictionary of *n* vectors

- Input vector v_0
- 4 vectors which are closest to v_0 (for k = 4)

A Probabilistic Algorithm

• Input vector v_o

- Randomly selected vector
- $rac{d}{}^{th}$ closest vector v_d
- Vectors which are closer to v_0 than v_d is to v_0

Dictionary of *n* vectors

- Select *m* vectors at random
- Select *dth* closest vector to *v₀*, (*v_d*) from the set *m*
- Select and output all vectors v from dictionary such that f(v,v₀) < f(v_d,v₀)
 - Thresholding instead of Sorting !

The Problem

- Inputs
 A dictionary of n vectors
 - An input vector v_o
 - A distance metric f(v, v₀)
- Problem
 - find k vectors from n which are closest to v₀

- Input vector v₀
 - 4 vectors which are closest to v_0 (for k = 4)

A Probabilistic Algorithm

- Input vector v_o
- Randomly selected vector
- $rac{d}{}^{th}$ closest vector v_d
- Vectors which are closer to v_0 than v_d is to v_0

Dictionary of *n* vectors

- Select *m* vectors at random
- Select *dth* closest vector to *v₀*, (*v_d*) from the set *m*
- Select and output all vectors v from dictionary such that f(v,v₀) < f(v_d,v₀)
 - Thresholding instead of Sorting !
- *d* is a design parameter that determines probability of error
- *m* can be calculated in *O*(*d* log *m*) time
- Fast algorithm, a single pass is enough to solve the problem
- Algorithm is erroneous if it returns more than or less than k vectors
- Probability of error $e^{-(\frac{1}{d!})(\frac{mk}{n})^d}$ is very low

 Applications in finger print matching, facial recognition, data mining, document similarity

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

Current Day Implementation Methodologies

Deterministic part of application Probabilistic part of application Deterministic part of application Probabilistic part of application Deterministic part of application Probabilistic part of application

Probabilistic algorithm on a host processor

Current Day Implementation Methodologies

Conventional System on a Chip

Current Day Implementation Methodologies

Fully Custom System on a Chip

Chief Concerns

CREST

- Cost-benefit tradeoff for probabilistic cognitive applications
- High performance should not be offset by high cost of randomization
 - "Select a vector uniformly at random"
 - What is the cost of selecting a vector at random ?
- (Intended) good quality of solution should not be compromised by bad quality of randomization
 - "Select a vector uniformly at random"
 - Truly uniformly at random ?

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

"Relaxing the requirement of 100% correctness for devices and interconnects may dramatically reduce costs of manufacturing, verification, and test. Such a paradigm shift is likely forced in any case by technology scaling, which leads to more transient and permanent failures of signals, logic values, devices, and interconnects" – ITRS Road Map

Central Idea

- Model and use noise susceptible *switches* as architecture building blocks
 - Behavior of such a switch is probabilistic yielding
 Probabilistic CMOS (PCMOS)
- Use PCMOS building blocks to realize probabilistic primitives of probabilistic applications
 - Non-deterministic behavior of devices is useful, not harmful
 - Orders of magnitude improvement in energy and performance
 - High quality of randomization

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

at GEORGIA TECH

DARPA

An Example PSOC Design

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

0.1	0.9	P3	P4	P5	P6	P7

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

PCMOS

| Switch |
--------	--------	--------	--------	--------	--------	--------

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

A row in a module

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

Evidence supplied by parents	Hypothesis: 1	Hypothesis: 2
A and α	0.9	0.1
A and β	0.1	0.9
B and α	0.5	0.5
B and β	0.3	0.7

An Example PSOC Design

DARPA

CREST

GEORGIA TECH

Metrics

- EPP = Energy (Joules) x Performance (seconds)
 - We are interested in both energy and performance
 - Invariant under voltage scaling techniques
 - Energy decreases and time increases proportionally
- Architecture Gain (Baseline, I) =
 - $\Gamma_{\rm I} = {\rm EPP}_{\rm Baseline} / {\rm EPP}_{\rm I}$
 - I is a particular choice of technology implementation and baseline is the host
 - Baseline is a CMOS based Custom design

EPP_I

EPP_{Baseline}

Probabilistic System-on-a-chip architecture with custom ASIC host

Conventional System-on-a-chip with custom ASIC host

Summary of Results for Architecture Gain

Summary of Results for Architecture Gain

Algorithm	Applications	Min EPP Gain	Max EPP Gain
	SPAM Filters, Windows Printer		
Bayesian	Trouble Shooting, Battlefield	12.5	291
	Planning		

Summary of Results for Architecture Gain

Algorithm	Applications	Min EPP Gain	Max EPP Gain
Cellular Automata	Pattern generation and classification (String classification)	83	110
Randomized Neural Network	Image and pattern classification, Optimization of NP-hard problems (vertex cover)	226.5	300
Hyper-Encryption	Security applications	1.06	1.06
Bayesian Network	Hospital patient management	3	7.5

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

Addressing Chief Concerns – Cost-Benefit Analysis of Randomization

Amount of opportunity in an application is captured through Probabilistic Flux F
 Flux is the ratio of the number of core probabilistic steps to the total number of operations during its execution.

CREST

GEORGIA TECH

CREST

GEORGIA TECH

 Energy consumed for implementing the "core probabilistic step", energy efficiency of the (deterministic) host processor are held invariant

CREST

GEORGIA TECH

 Energy consumed for implementing the "core probabilistic step", energy efficiency of the (deterministic) host processor are held invariant

- Similar trend can be demonstrated for other applications as well
 - Consider the randomized neural network application

gains increase with Flux

CREST

GEORGIA TECH

Recall - Flux quantifies "amount of opportunity"

Insights and optimizations

- Lessons learned from analysis of gains
 - Algorithm

CREST

GEORGIA TECH

- Increase opportunity (increase flux)
- Architecture and Technology
 - Increase gains due to PCMOS
 - Create efficient architectures that leverage PCMOS
- Increase the efficiency of the host processor
 - Design Custom-ASIC host processor

Algorithm	EPP Gain (before optimization – StrongARM Host)	EPP Gain (after optimization – ASIC Host)
Hyper Encryption	1	9.48
Probabilistic Cellular Automata	1.06	561

Addressing Chief Concerns - Quality of Randomization

Impact of probabilistic bits on application level *quality of solution* is important

- How "good" (how "random") is PCMOS ?
- What is "random" ?
- Work-in-progress to test quality-sensitive applications
- Quality of randomness tests from National Institute of Standards and Technology (NIST)
 - Compare and evaluate the random sequences generated by PCMOS through measurements
 - Demonstrate application-level impact

Test	PCMOS	PRNG
Frequency	Pass (0.98)	Fail (0.84)
Block-frequency	Pass (1.00)	Pass (0.98)
Cumulative sum	Pass (0.98)	Fail (0.86)
Runs	Pass (0.98)	Pass (0.96)
FFT	Pass (1.00)	Pass (1.00)
Approximate entropy	Pass (0.98)	Fail (0.92)
Long-run	Pass (1.00)	Pass (1.00)
Rank	Pass (1.00)	Fail (0.00)
Non-overlapping template	Pass (0.9375)	Pass (0.9375)
Overlapping template	Fail (0.8889)	Fail (0.00)
Lempel-Ziv	Fail (0.8125)	Fail (0.0625)
Linear complexity	Pass (1.00)	Pass (1.00)
Universal Statistical	Fail (0.725)	Fail (0.8889)
Serial	Pass (1.00)	Pass (1.00)

Pass

(result > 0.93) →

(result < 0.93) \rightarrow

46

Fail

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

- Bit converter is used to compress data to send to earth because of the limited bandwidth and power constraints
- 8 bit A/D and Compression of data create Quantization Noise¹
- Fewer bits used for A/D and Compression, more Quantization Noise
- However as long as *Quantization Noise* is less than noise created by PCMOS, quantization noise will never be seen
- Conclusion: With PCMOS we can use a more efficient A/D

R. Kwok and W. T. Johnson. "Block Adaptive Quantization of Magellan SAR Data". IEEE Transactions on Geoscience and Remote Sensing, vol 27, July, 1989.

- What are the implications of error?
 - Not all applications require deterministic behavior
 - Degradation

CREST **PCMOS Building Blocks for DSP** GEORGIA TECH Applications SAR H.264 **Primitives** FFT FIR **Building Blocks** delay multiplier adder Switches and basic gates Devices

- What are the implications of error?
 - Not all applications require deterministic behavior
 - Degradation
 - Error rate or probability p

PCMOS Building Blocks for DSP

- What are the implications of error?
 - Not all applications require deterministic behavior
 - Degradation

CREST

GEORGIA TECH

- Error rate or probability p
- Signal to noise ratio (SNR)

- What are the implications of error?
 - Not all applications require deterministic behavior
 - Degradation
 - Error rate or probability p
 - Signal to noise ratio (SNR)
 - Image distortion

Original Image

CRES

- Original SAR image taken of Los Angeles area.
- Simulation assumes raw data has already been converted to digital and is ready for 32-bit processing
- Simulation assumes either:
 - A future technology generation where noise is comparable to supply voltage OR
 - Propagation delay errors are present due to energy savingsperformance trade-off

PCMOS Impact on SAR Imaging

PCMOS Result

CREST

GEORGIA TECH

- Radar image of Los Angeles using PCMOS SAR processor.
- 5.6X energy savings over current technology processor
- SNR = 28 dB

Current Technology Result

 Radar image of Los Angeles using current SAR processor
 SNR > 30 dB

PCMOS Impact on SAR Imaging

PCMOS Result

CREST

GEORGIA TECH

- Radar image of Los Angeles using PCMOS SAR processor.
- 5.6X energy savings over current technology processor
- SNR = 28 dB

Conventional Voltage Scaling

- Conventional voltage scaling technique used where supply voltage dropped uniformly
- 2.5X reduction in energy over current technology
- SNR = 0

H.264 Image Decoding with PCMOS

GEORGIA TECH

CREST

FIR sub-circuit of H.264 decoding implemented with PCMOS

Normal operation

Non-Uniform voltage scaling 1.66X Energy Savings

Conventional voltage scaling 1.69X Energy Savings

K. V. Palem, B. E. S. Akgul, and J. George. Variable scaling for computing elements. Invention Disclosure, Feb. 2006.

H.264 Experiment

FIR Type	SNR
1. Original	Approach +∞
2. Geometric	60 dB
3. Linear	50 dB
4. Uniform	4 dB
5. Geometric	60 dB

Total energy spent by FIR filter = 4.25 nJ 3.5 nJ

FIR Type	Implementation
Original:	No scaling
Geometric:	Geometric scaling with <i>PCMOS</i>
Linear:	Linear scaling with PCMOS
Uniform:	Conventional (unbiased) scaling

- FIR filter is simulated in HSpice
 - FIR filter is used for interpolation in the H.264 decoder application
- Geometric V_{dd} scaling with PCMOS improves SNR-energy trade-off significantly
 - Ideal for streaming to mobile devices

Outline

Role of Probability in Cognitive Applications

Current Implementation Methodologies and Chief Concerns

Exploiting Technology Trends – *Probabilistic* CMOS Technology

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

PSOC Architectures for Conventional Signal Processing Applications

Next Steps

Next Steps: Application Impact

CREST

- Micro-UAVs
 - application demand
 - high-performance
 - real-time wireless communication and datasharing
 - realize probabilistic algorithms such as pattern matching, inferencing, reasoning
 - need low energy consumption
 - benefit from error correction and redundancy mechanisms to
 - compensate device level errors
 - adjust application quality
- Orders of magnitude savings in energy x performance against conventional designs
 - extend battery life from hours to weeks