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Contributions

Application analysis and optimization methodology
Metrics for evaluating and characterizing computing platforms based 
on Probabilistic CMOS technology
Experimental methodology for performance evaluation of computing
platforms based on Probabilistic CMOS technology

Computing platforms based on devices with probabilistic 
behavior

Computing platforms are not only noise tolerant but harness 
statistical behavior to compute

Orders of magnitude savings in energy and performance 
at the application level

Enable the implementation of complex cognitive and probabilistic
applications

Higher quality-of-solution for cognitive and probabilistic 
applications

By harnessing naturally probabilistic substrates
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Role of Probability in Cognitive 
Applications

Probabilistic Algorithms find widespread use in 
cognitive applications

Probabilistic models of human reasoning
Bayesian model, randomized neural network model

Ability to generate good execution instances for arbitrarily 
chosen problem instances

Good execution for all problem instances
Ability for rapid and uniform exploration of search space

Heuristic optimization, heuristic search techniques

Historical benefits
Rapid execution
Good quality of solution
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Outline

Role of Probability in Cognitive Applications
Probabilistic model of human reasoning
Good execution instances for arbitrary problem instances
Rapid exploration of search space
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Probabilistic Models of Human Reasoning: 
An Example

Bayesian inference finds widespread use in probabilistic 
cognitive applications

Probabilities are interpreted as “degree of belief” in a hypothesis
Infer a hypothesis based on “evidence”
Can be performed using a Bayesian Network

A Bayesian network is a directed acyclic graph
Nodes represent variables, edges represent dependence 
relationship between the variables

A node infers a value based on the values of its parents and an 
associated conditional distribution

Different network topologies and conditional distributions can solve 
different problems
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Bayesian Network

0.70.3B and β

0.50.5B and α

0.90.1A and β

0.10.9A and α

Hypothesis: 2Hypothesis: 1Evidence 
supplied by 
parentsEvidence Evidence

A β

Parent 1 Parent 2

Hypothesis: 2
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Outline

Role of Probability in Cognitive Applications
Probabilistic model of human reasoning
Good execution instances for arbitrary problem instances
Rapid exploration of search space
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Rapid Exploration of Search Space - An 
Example

Inputs
A dictionary of n vectors
An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 

closest to v0

The Problem



11

Rapid Exploration of Search Space - An 
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A dictionary of n vectors
An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 

closest to v0

Dictionary of n vectors

Input vector v0

The Problem
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Rapid Exploration of Search Space - An 
Example

Inputs
A dictionary of n vectors
An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 

closest to v0

Dictionary of n vectors

Input vector v0

4 vectors which 
are closest to v0
(for k = 4)

The Problem
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Dictionary of n vectors
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Example

Inputs
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An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 
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Input vector v0

Input vector v0
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are closest to v0
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Dictionary of n vectors

Rapid Exploration of Search Space - An 
Example

Inputs
A dictionary of n vectors
An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 

closest to v0

Dictionary of n vectors

Input vector v0

Input vector v0

Select m vectors at random
4 vectors which 
are closest to v0
(for k = 4)

Randomly selected 
vector

The Problem A Probabilistic Algorithm
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Dictionary of n vectors

Rapid Exploration of Search Space - An 
Example

Inputs
A dictionary of n vectors
An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 

closest to v0

Dictionary of n vectors

Input vector v0

Input vector v0

Select m vectors at random
Select dth closest vector to v0, (vd) from the 
set m

4 vectors which 
are closest to v0
(for k = 4)

Randomly selected 
vector

dth closest vector vd

The Problem A Probabilistic Algorithm
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Dictionary of n vectors

Rapid Exploration of Search Space - An 
Example

Inputs
A dictionary of n vectors
An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 

closest to v0

Dictionary of n vectors

Input vector v0

Input vector v0

Select m vectors at random
Select dth closest vector to v0, (vd) from the 
set m
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Thresholding instead of Sorting !
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(for k = 4)
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Dictionary of n vectors

Rapid Exploration of Search Space - An 
Example

Inputs
A dictionary of n vectors
An input vector v0
A distance metric f(v, v0)

Problem
find k vectors from n which are 

closest to v0

Dictionary of n vectors

Input vector v0

Input vector v0

Select m vectors at random
Select dth closest vector to v0, (vd) from the 
set m
Select and output all vectors v from 
dictionary such that f(v,v0) < f(vd,v0)

Thresholding instead of Sorting !

4 vectors which 
are closest to v0
(for k = 4)

Randomly selected 
vector

dth closest vector vd

Vectors which 
are closer to v0
than vd is to v0

The Problem A Probabilistic Algorithm

d is a design parameter that determines probability of error
m can be calculated in O(d log m) time
Fast algorithm, a single pass is enough to solve the problem
Algorithm is erroneous if it returns more than or less than k vectors
Probability of error               is very low 
Applications in finger print matching, facial recognition, data mining, 

document similarity

d

n
mk

de
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛−

!
1



18

Outline

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

Role of Probability in Cognitive Applications

Exploiting Technology Trends – Probabilistic CMOS Technology

PSOC Architectures for Conventional Signal Processing 
Applications
Next Steps

Current Implementation Methodologies and Chief Concerns



19

Current Day Implementation Methodologies

StrongARM
Host

Deterministic part of 
Probabilistic Algorithm

Probabilistic part of 
Probabilistic Algorithm 
(Uses Software Based 

Pseudorandom Number 
Generation)

Probabilistic algorithm on a host 
processor

Deterministic part of 
application

Probabilistic part of 
application

Deterministic part of 
application

Probabilistic part of 
application

Probabilistic part of 
application

Deterministic part of 
application
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Current Day Implementation Methodologies

Conventional SoC

CMOS 
coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application

Conventional System on a Chip

StrongARM 
Host

(SA-1100)

Deterministic part of 
application

Probabilistic part of 
application

Deterministic part of 
application

Probabilistic part of 
application

Probabilistic part of 
application

Deterministic part of 
application
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Current Day Implementation Methodologies

Deterministic part of 
application

Probabilistic part of 
application

Deterministic part of 
application

Probabilistic part of 
application

Probabilistic part of 
application

Deterministic part of 
application

Conventional SoC

Custom 
ASIC Host

CMOS 
coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application

Fully Custom System on a Chip



22

Chief Concerns

Cost-benefit tradeoff for probabilistic cognitive 
applications

High performance should not be offset by high cost of 
randomization

“Select a vector uniformly at random”
What is the cost of selecting a vector at random ?

(Intended) good quality of solution should not be 
compromised by bad quality of randomization

“Select a vector uniformly at random”
Truly uniformly at random ?
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Exploiting Technology Trends

Intel 4004, 10 microns  2300 
transistors (1971)

Intel Pentium M, 0.90 microns 
170 Million transistors (2003)

The characteristics of VLSI 
systems are changing

Shrinking feature sizes, Increasing 
transistor densities

Device is no 
longer 

deterministic!

parametric variations and noise 
yield probabilistic devices

Shrinking feature sizes and 
increasing densities increase 
power density

“Relaxing the requirement of 100% correctness for devices and interconnects may 
dramatically reduce costs of manufacturing, verification, and test. Such a paradigm shift 
is likely forced in any case by technology scaling, which leads to more transient and 
permanent failures of signals, logic values, devices, and interconnects” – ITRS Road Map
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Central Idea

Noise Models

Integrated noise modeling 

Tunneling Power 
supply Thermal Cross-talk

PCMOS Primitives
Inverter, Logic gates, Decoders, Multiplexers, DSP 

filters,    etc.

Probabilistic Switch

Model and use noise 
susceptible switches as 
architecture building blocks

Behavior of such a switch is 
probabilistic yielding 
Probabilistic CMOS (PCMOS)

Use PCMOS building blocks to 
realize probabilistic primitives of 
probabilistic applications

Non-deterministic behavior of 
devices is useful, not harmful
Orders of magnitude 
improvement in energy and 
performance
High quality of randomization

Probabilistic SoC

RISC
Processor

PCMOS 
Co-processor
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An Example PSOC Design

For all nodes do
Choose current node
Collect evidence from parents
Select Table which 
corresponds to current node
Supply evidences and look up 
hypothesis
Update hypotheses

End For

Probabilistic SoC

Host
PCMOS 

coprocessors

0.70.3B and β

0.50.5B and α

0.90.1A and β

0.10.9A and α

Hypothesis: 2Hypothesis: 1Evidence 
supplied by 
parentsEvidence Evidence

A β

Parent 1 Parent 2

Hypothesis: 2

Communication
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An Example PSOC Design

0.70.3B and β

0.50.5B and α

0.90.1A and β

0.10.9A and α

Hypothesis: 2Hypothesis: 1Evidence 
supplied by 
parents

0.70.3B and β

0.50.5B and α

0.90.1A and β

0.10.9A and α

Hypothesis: 2Hypothesis: 1Evidence 
supplied by 
parents

Consider the core probabilistic step of Bayesian Network
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An Example PSOC Design
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An Example PSOC Design

0.70.3B and β
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P4 P5 P6 P70.1 0.9 P3
Switch Switch Switch Switch Switch Switch Switch

PCMOS
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An Example PSOC Design

P4 P5 P6 P7

A row in a module

3

7

priority encoder

7
read 
enable7-bit Buffer

0.70.3B and β

0.50.5B and α

0.90.1A and β

0.10.9A and α

Hypothesis: 2Hypothesis: 1Evidence 
supplied by 
parents

Switch Switch Switch Switch Switch Switch Switch

0.70.3B and β

0.50.5B and α

0.90.1A and β

0.10.9A and α

Hypothesis: 2Hypothesis: 1Evidence 
supplied by 
parents

Consider the core probabilistic step of Bayesian Network

PCMOS
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An Example PSOC Design
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An Example PSOC Design

P4 P5 P6 P7

A row in a module
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PCMOS
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Evidence Evidence

A β

Parent 1 Parent 2

Hypothesis: 2

decoder

A and β

buffer
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Metrics

EPP = Energy (Joules) x 
Performance (seconds)

We are interested in both energy and 
performance
Invariant under voltage scaling 
techniques

Energy decreases and time increases 
proportionally

Architecture Gain (Baseline, I ) = 
ΓI = EPPBaseline / EPPI

I is a particular choice of technology 
implementation and baseline is the host
Baseline is a CMOS based Custom 
design 

EPPBaseline

Probabilistic System-on-a-chip 
architecture with custom ASIC host

Custom 
ASIC

PCMOS 
coprocessors

Application

EPPI

Custom 
ASIC

CMOS 
coprocessors

Deterministic part

Probabilistic part
(hardware-based 
pseudorandom 

source)

Application

Conventional System-on-a-chip with 
custom ASIC host
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Summary of Results for Architecture Gain

vs
StrongARM

Host

Deterministic 
algorithm on a host 

processor

Deterministic part of 
application

Probabilistic system-on-a-
chip architecture

StrongARM 
Host

(SA-1100)

PCMOS 
coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application

A. Sinha and A. Chandrakasan, 
“Jouletrack a web based tool for 
software energy profiling,” 38th 
DAC, pp. 220–225, 2001.

Chip 
measurements

HSpice 
Simulations
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Summary of Results for Architecture Gain

vs
StrongARM

Host

Deterministic 
algorithm on a host 

processor

Deterministic part of 
application

Probabilistic system-on-a-
chip architecture

StrongARM 
Host

(SA-1100)

PCMOS 
coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application

Bayesian
SPAM Filters, Windows Printer 

Trouble Shooting, Battlefield 
Planning

Applications

29112.5

Max EPP GainMin EPP GainAlgorithm
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Hyper-Encryption

Randomized Neural 
Network

Cellular Automata

Summary of Results for Architecture Gain

Security applications

Image and  pattern classification, 
Optimization  of NP-hard 
problems (vertex cover)

Pattern generation and 
classification (String  

classification)

Applications

1.061.06

300226.5

11083

Max EPP GainMin EPP GainAlgorithm

vs

Probabilistic system-on-a-
chip architecture

StrongARM 
Host

(SA-1100)

PCMOS 
coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application

Implementation Alternatives 
(providing pseudorandom bits)

Deterministic 
part of 

algorithm

Probabilistic part of algorithm 
(Uses software-based 

pseudorandom number 
generation)

Application

StrongARM Host

Probabilistic algorithm on a host 
processor

Bayesian Network Hospital patient management 7.53
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Addressing Chief Concerns – Cost-Benefit 
Analysis of Randomization

Probabilistic SoC

StrongARM 
Host

(SA-1100)

PCMOS 
coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application

PCMOS Technology

Implementation independent algorithmic 
characteristics

Amount of opportunity in the algorithm to 
“invoke” PCMOS based primitives

Implementation dependent 
architecture characteristics

The “fit” of the architecture primitives to 
the application primitives

Implementation dependent 
technology characteristics

Energy and performance 
efficiency of PCMOS

Application level 
Impact is 

determined here
Gains are 

derived here

Amount of opportunity in an application is captured through Probabilistic Flux F 
Flux is the ratio of the number of core probabilistic steps to the total number of operations 
during its execution.
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Number of times deterministic part 
“invokes” the host x Energy per 
invocation

Number of times probabilistic part is 
“invoked” x Energy per invocation

Energy(det,Baseline) + Energy(prob,Baseline)

EnergyBaseline x TimeBaseline

Recall:  ΓI = EPPBaseline / EPPI

Addressing Chief Concerns

Cycles(det,Baseline) x Energy(cycle,Host) Flux x Cycles(det,Baseline) x Energy(Flux,Baseline)

+

+

1 +
Flux x Energy(Flux,Baseline)

Energy(cycle,Host)

1 +
Flux x Time(Flux,Baseline)

Time(cycle,Host)
ΓI ≅

Using similar approach for Time and Approximating
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Bayesian Network
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Flux x Time(Flux,Baseline)

Time(cycle,Host)
ΓI =
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Energy consumed for implementing the “core probabilistic step”, energy 
efficiency of the (deterministic) host processor are held invariant
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Flux x Energy(Flux,Baseline)
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1 +
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Time(cycle,Host)
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Implementation Independent Algorithmic
Characteristics

Energy consumed for implementing the “core probabilistic step”, energy 
efficiency of the (deterministic) host processor are held invariant

1 +
Flux x Energy(Flux,Baseline)

Energy(cycle,Host)

1 +
Flux x Time(Flux,Baseline)

Time(cycle,Host)
ΓI =

 2
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Implementation Independent Algorithmic
Characteristics

Similar trend can be demonstrated for other 
applications as well

Consider the randomized neural network application

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0.015  0.016  0.017  0.018  0.019  0.02

EP
P 

G
ai

n

Flux

 Size = 10

 Size = 30

 Size = 40
 Size = 80

 Size = 100

(Modeled) Variation of EPP Gain With Flux

With fixed technology and architecture parameters 
gains increase with Flux

Recall - Flux quantifies “amount of opportunity”

1 +
Flux x Energy(Flux,Baseline)

Energy(cycle,Host)

1 +
Flux x Time(Flux,Baseline)

Time(cycle,Host)

ΓI ≅
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Insights and optimizations
Lessons learned from analysis of gains

Algorithm
Increase opportunity (increase flux)

Architecture and Technology
Increase gains due to PCMOS 
Create efficient architectures that leverage PCMOS

Increase the efficiency of the host processor
Design Custom-ASIC host processor

1.06

1

EPP Gain (before optimization 
– StrongARM Host)

561Probabilistic Cellular Automata

9.48Hyper Encryption

EPP Gain (after optimization –
ASIC Host)Algorithm

ASIC
PCMOS 

coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application

vs

ASIC
CMOS 

coprocessors

Deterministic 
part of 

application

Probabilistic 
part of 

application

Application
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Addressing Chief Concerns - Quality of 
Randomization

Impact of probabilistic bits on 
application level quality of 
solution is important

How “good” (how “random”) is 
PCMOS ?
What is “random” ?
Work-in-progress to test 
quality-sensitive 
applications

Quality of randomness tests 
from National Institute of 
Standards and Technology 
(NIST)

Compare and evaluate the 
random sequences generated 
by PCMOS through 
measurements
Demonstrate application-level 
impact

Fail (0.84)Pass (0.98)Frequency

Pass (1.00)Pass (1.00)Serial

Fail (0.8889)Fail (0.725)Universal Statistical

Pass (1.00)Pass (1.00)Linear complexity

Fail (0.0625)Fail (0.8125)Lempel-Ziv

Fail (0.00)Fail (0.8889)Overlapping 
template

Pass (0.9375)Pass (0.9375)Non-overlapping 
template

Fail (0.00)Pass (1.00)Rank

Pass (1.00)Pass (1.00)Long-run

Fail (0.92)Pass (0.98)Approximate 
entropy

Pass (1.00)Pass (1.00)FFT

Pass (0.96)Pass (0.98)Runs

Fail (0.86)Pass (0.98)Cumulative sum

Pass (0.98)Pass (1.00)Block-frequency

PRNGPCMOSTest

(result > 0.93) Pass (result < 0.93) Fail
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A/D Conversion of Raw Data

Bit converter is used to compress data to send to earth because 
of the limited bandwidth and power constraints
8 bit A/D and Compression of data create Quantization Noise1

Fewer bits used for A/D and Compression, more Quantization 
Noise
However as long as Quantization Noise is less than noise 
created by PCMOS, quantization noise will never be seen
Conclusion: With PCMOS we can use a more efficient A/D

8-bit A/D

8

Bit Converter

4

Received

Raw Data

Downlink to earth

SAR Satellite

R. Kwok and W. T. Johnson.  “Block Adaptive Quantization of Magellan SAR Data”.
IEEE Transactions on Geoscience and Remote Sensing, vol 27, July, 1989.
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PCMOS Building Blocks for DSP
SAR

FFT

Building Blocks delay adder multiplier

Primitives FIR

Applications H.264

What are the implications of error?
Not all applications require deterministic behavior
Degradation

Switches and basic gatesDevices



50

PCMOS Building Blocks for DSP
SAR

FFT

Building Blocks delay adder multiplier

Primitives FIR

Applications H.264

What are the implications of error?
Not all applications require deterministic behavior
Degradation

Error rate or probability p

Switches and basic gatesDevices
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PCMOS Building Blocks for DSP
SAR

FFT

Building Blocks delay adder multiplier

Primitives FIR

Applications H.264

What are the implications of error?
Not all applications require deterministic behavior
Degradation

Error rate or probability p
Signal to noise ratio (SNR)

Switches and basic gatesDevices
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PCMOS Building Blocks for DSP
SAR

FFT

Building Blocks delay adder multiplier

Primitives FIR

Applications H.264

What are the implications of error?
Not all applications require deterministic behavior
Degradation

Error rate or probability p
Signal to noise ratio (SNR)
Image distortion

Switches and basic gatesDevices
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Original Image

Original SAR image taken of 
Los Angeles area.
Simulation assumes raw 
data has already been 
converted to digital and is 
ready for 32-bit processing
Simulation assumes either:

A future technology 
generation where noise 
is comparable to supply 
voltage OR
Propagation delay errors 
are present due to 
energy savings-
performance trade-off
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PCMOS Impact on SAR Imaging

Radar image of Los Angeles 
using PCMOS SAR 
processor.
5.6X energy savings over 
current technology processor
SNR = 28 dB

PCMOS Result

Radar image of Los 
Angeles using current 
SAR processor
SNR > 30 dB

Current Technology Result
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Conventional voltage 
scaling technique used 
where supply voltage 
dropped uniformly
2.5X reduction in energy 
over current technology
SNR = 0

Conventional Voltage Scaling

PCMOS Impact on SAR Imaging

Radar image of Los Angeles 
using PCMOS SAR 
processor.
5.6X energy savings over 
current technology processor
SNR = 28 dB

PCMOS Result
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H.264 Image Decoding with PCMOS

FIR sub-circuit of H.264 decoding implemented with 
PCMOS

Conventional voltage scaling

12-bit Adder

outputs

MSB LSB

Vdd

Normal operation

12-bit Adder

outputs

MSB LSB 12-bit AdderMSB LSB

Vdd

Conventional uniform Vdd scalingPCMOS non-uniform Vdd scalingNominal Vdd operation

Non-Uniform voltage scaling

outputs

An element of a FIR filter used in H.264 image compression standard yielding an image

1.69X Energy Savings1.66X Energy Savings
K. V. Palem, B. E. S. Akgul, and J. George. Variable scaling for computing elements. Invention 
Disclosure, Feb. 2006.
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H.264 Experiment

1. Original        Approach +∞
2. Geometric 60 dB

3. Linear 50 dB

4. Uniform 4 dB

5. Geometric 60 dB

FIR filter is simulated in HSpice
FIR filter is used for interpolation in the 

H.264 decoder application

Geometric Vdd scaling with PCMOS 
improves SNR-energy trade-off significantly

Ideal for streaming to mobile devices

4.25 nJ 3.5 nJTotal energy spent by FIR filter =

FIR Type             SNR

Original: 

Geometric: 

Linear: 

Uniform: 

FIR Type      Implementation
No scaling
Geometric scaling 
with PCMOS
Linear scaling with 
PCMOS
Conventional 
(unbiased) scaling 
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Outline

Probabilistic System on a Chip (PSOC) Architectures

Optimizing Probabilistic System on a Chip (PSOC) Architectures

Role of Probability in Cognitive Applications

Exploiting Technology Trends – Probabilistic CMOS Technology

PSOC Architectures for Conventional Signal Processing 
Applications
Next Steps

Current Implementation Methodologies and Chief Concerns
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Next Steps: Programmable Co-Processors

Noise Models

Integrated noise modeling at 
Terascale

Tunneling Power 
supply Thermal Cross-talk

PCMOS Primitive 
Libraries

+

Inverter, Logic gates, Decoders, 
Multiplexers, DSP filters, etc.

Increasing densities
Nanotubes and other 

Molecular Technologies

DSM & fabrication technologies 

=

Programmable           
Co-processors for 
Cognitive Kernels

PCMOS
tile

Near   
neighbor   
ultra-fast 
interconnect

Ultra Low Energy PCMOS
Co-processors

Probabilistic SoC

RISC
Processor

PCMOS
Co-processor
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Next Steps: Application Impact
Micro-UAVs

application demand 
high-performance
real-time wireless 
communication and data-
sharing
realize probabilistic algorithms 
such as pattern matching, 
inferencing, reasoning

need low energy consumption
benefit from error correction and 
redundancy mechanisms to

compensate device level errors
adjust application quality

Orders of magnitude savings in 
energy x performance against 
conventional designs

extend battery life from hours to 
weeks

PCMOS based primitives

Bayesian 
networks

Random neural 
networks

MicroUAVs
Sc

en
ar

io
K

er
ne

l
Pr

im
iti

ve
s

Probabilistic 
decoder/encoder

Neuron firings 
(random neural 

network) 

DCT / IDCT  
DSP Filters

Probabilistic SoC
RISC PCMOSPS

oC

RISC PCMOS
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