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1. Introduction
Over the next decade the DoD will be challenged to de-

ploy cognitive information processing systems that will em-
body learning and reasoning using semantically rich knowl-
edge representations in applications such as autonomous ve-
hicles, intelligence analysts, and electronic surveillance. In ad-
dition to the significant computational demands, cognitive ap-
plications must deal with uncertainty and inexact information
and as a result probabilistic models have been central to many
widely used cognitive kernels. Examples include Bayesian in-
ference [7], probabilistic cellular automata, and randomized
neural networks [4].

Further, as device scaling moves into the nanometer regime
two significant technology challenges faced by embedded cog-
nitive systems are the impact of noise and the significance
of lower energy consumption, especially for mobile and au-
tonomous embedded devices. These issues present significant
challenges to the ability to sustain the performance benefits of
Moore’s Law over the next decade [8, 10, 5]. We can expect
the innovation of novel computing architectures that are able to
synergistically combine advances in device technology, algo-
rithms, and new architectural primitives to deliver cognitive in-
formation processing systems that operate within the required
size, weight, energy, and execution time constraints. In our cur-
rent work we have innovated the concept of a probabilistic de-
vice or switch, whose output is guaranteed to be correct with
a probabilityp, 1/2 < p ≤ 1 (wherep is considered to be
unity in the context of all conventional computing switches, in
that the device is deemed to compute correctly and hence with-
out error). We have shown how such devices can trade-off en-
ergy consumption with the probability of correctness [6]. Such
devices can be fabricated using conventionalCMOS technology
and are referred to as probabilisticCMOS or PCMOS devices.
We discuss howPCMOS devices can be used to build archi-
tectural solutions, probabilistic system-on-a-chipPSOC, to pro-
vide ultra-low energy architectures that are naturally matched
to probabilistic components of cognitive applications. We dis-
cuss the impact of this technology in the cognitive domain and
address future trends.

2. Probabilistic CMOS and Probabilistic-System-
on-a-Chip Architectures

Any cognitive application consists of a deterministic compo-
nent and a probabilistic component. As illustrated in Figure 1,
the probabilistic component could be implemented on aproba-
bilistic co-processor designed usingPCMOSswitches [3]. Such
switches can trade-off energy for probability of correctness [6].
Such architectures—with a deterministic low energy host pro-
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cessor and aPCMOSbased co-processor—will be referred to as
probabilistic-system-on-a-chip (PSOC) architectures [2].
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Figure 1. The canonical psoc architecture

To highlight and to analyze the benefits ofPCMOS technol-
ogy, the chief metric of interest is theEnergy performance
product or EPP for short. Given theEPPof two alternate real-
izations, they can be compared by computing theenergy per-
formance product gain. Energy performance product gain,ΓI ,
is the ratio of theEPPof the baseline denoted byβ to theEPP
of a particular architectural implementationI. ΓI is calculated
as follows:

ΓI =
Energyβ × Timeβ

EnergyI × TimeI
(1)

Table 1 summarizes the application scenarios, and the ap-
plication level EPP gains ofPSOC over the baseline for
the Bayesian Inference(BN) and Randomized Neural Net-
work (RNN) application. The baseline implementation forBN
and RNN applications is the StrongARMSA-1100 comput-
ing the deterministic as well as the probabilistic content andI
is aPSOCexecuting an identical algorithm.

Algorithm Applications ΓI
Min Max

BN SPAM Filters, Battlefield Plan-
ning [9], Windows printer trou-
ble shooting, Hospital Patient
Management [1]

3 7.43

RNN Image and pattern classifica-
tion, Optimization of NP-hard
problems

226.5 300

Table 1. Maximum and minimum EPPgains of PCMOS

over the baseline implementation where the imple-
mentation I has a StrongARM SA-1100host and a
PCMOSbased co-processor

As seen from Table 1, the application level gains of each of
the application vary. In the subsequent sections, we explain this
variation and in addition, analyze the factors affecting gains in
a systematic way.
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Figure 2. Variation of Gain With Respect to Flux for
(a) Bayesian Network and (b) Randomized Neural
Network

Application gain overSA-1100 gain overCMOS

BN 9.99× 107 2.71× 106

RNN 1.25× 106 2.32× 104

Table 2. The EPP gain of PCMOS over SA-1100 and
over CMOS for the core probabilistic step

3. PSOCBased Gains and an Analysis of Gains
Intuitively, the application level gain in energy and perfor-

mance depend on three factors:(i) the “amount of opportunity”
in the application to leverage thePCMOS based co-processor
and (ii) the amount of gains afforded “per unit of opportu-
nity” and (iii) its application-level impact. Broadly, the factors
which influence gain can be studied under two categoriesIm-
plementation independentcharacteristics andimplementation
dependentcharacteristics.

3.1. Implementation Independent Characteristics In-
fluencing PSOCGains

In thePSOCbased realization of Cognitive applications, the
core probabilistic stepof each application is implemented in
the PCMOSbased co-processor and one core probabilistic step
will be regarded as one “unit of opportunity”. The “amount of
opportunity” is formalized through the notion ofFlux F (or
flux for short) whereF of an algorithm is defined as thera-
tio of the core probabilistic steps to the total number of oper-
ations of an algorithm during a typical execution of the algo-
rithm. Figure 2 shows howΓI varies with the flux illustrating
the results of both analytical as well as simulation models.

3.2. Implementation Dependent Characteristics In-
fluencing PSOCGains

The application level gains not only depends on the flux
of an application but on the energy and performance gains af-
forded per “unit of opportunity”. Table 2 presents theEPPgain
of PCMOS based co-processor for the core probabilistic step
of each of the applications of interest. The second column in
the table corresponds to the case whereβ is theSA-1100 host
without any co-processor and the third column corresponds to
the case whereβ is a SA-1100 host coupled to a conventional
CMOS based co-processor.

For a given flux, the application level gain would increase
with increase in the energy as well as performance gain per unit
flux. To illustrate this, let us revisit the Bayesian Network ap-
plication (in particular a network of37 nodes with a flux of
0.25), and the gainΓI whereI is a PSOCand the baseline is
a StrongARMSA-1100 host without a co-processor. As illus-
trated in Figure 3, higher the energy and timesavedper invo-
cation of the core probabilistic step, higher is the gain afforded
by thePSOC implementation. The point where the surface in-
tersects thez axis, presents the performance and energy con-
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Figure 3. For a fixed Flux, variation of gain with re-
spect to energy saved per unit Flux and time saved
per unit Flux by using PCMOS

sumption per unit flux which corresponds to a gain of3 which
correlates with the simulation results.

4. Concluding Remarks
Cognitive applications place stringent requirements on com-

putational resources, which are unlikely to be met using the cur-
rent strategy of performance increases purely due to Moore’s
law. In addition, we have seen how the probabilistic steps of
these applications could be realizeddirectly at the architec-
tural and device level using futurePCMOS devices. Such re-
alizations would yield orders of magnitude improvement in en-
ergy and performance due to three reasons(i) Abundant op-
portunity for “acceleration” in cognitive application,(ii) Ex-
tremely efficient implementation of key steps of cognitive ap-
plication usingPCMOS technology and(iii) Favorable trends
which indicates that custom solutions further increase gains.
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