

MONARCH: A First Generation Polymorphic Computing Processor

Mike Vahey, Raytheon John Granacki, USC-ISI

Lloyd Lewins (Raytheon), Drew Davidoff (Raytheon), Jeff Draper (USC-ISI), Gillian Groves (Raytheon), Craig Steele (Exogi), Matt Kramer (Raytheon), Jeff LaCoss (USC-ISI), Kenneth Prager (Raytheon), Jim Kulp (Mercury), Charles Channell (Raytheon)

Sponsored by DARPA BAA 00-59 (Polymorphous Computing Architectures – Dr William Harrod IPTO

- Application needs that drive MONARCH like processors
- MONARCH summary
- Architecture details
- Processor chip description
- Transitions and summary

Embedded Processing Architectures Ten Year Vision (2004-2014)

Market/Technology Trend

Mission Changes

- Need for waveform diversity and interference rejection
- Growing number of sensor channels at GHz conversion rates
- Growing use of adaptive algorithms
- Higher resolution sensors
- More use of autonomous, small sensors and battery powered ground sensors
- More demand for space based sensors
- Desire/need for direct transmission of info to users
- Commercial trends drive Semiconductors
 - Cellular market processors
 - Game market
 - Reprogrammable FPGAs

System Implications

- Digital interface is moving forward using higher speed A/Ds
- Higher speed I/O (10-50 GB/S)
- Higher throughputs (.1-100 TOPS)
- Growing need for power efficient
 processing
- Larger memory storage (->1TByte)
- Space assets become integral part of terrestrial fire control
 - Higher on-orbit throughputs
- Communication of information between all assets, in dynamically changing network is essential
 - Plug and play critical
- More embedded intelligence within sensors and weapons
- Power/heat impact on electronics

MONARCH

From space to ground, multiple applications need efficient processing

Space Sensors

- On Orbit 1-5 TOPs throughput programmable
- STAP RADAR processing
- HSI processing
- Image formation

Airborne Multi-sensor Processing

- 3-5 TFLOPS in one chassis
- STAP processing (150 channels)
- IRST
- Multi sensor fusion

TOPS – Tera Operations Per Second STAP – Space Time Adaptive Processing IRST – InfraRed Search and Track HSI – Hyper Spectral Imaging ATR – Automatic Target Recognition

Unattended sensors

- 1 GOPS on batteries
- Digital receivers
- I ATR
- Multi sensor fusion

MONARCH Morphs to Mission Needs

The CREE FACULUSORIUS

MONARCH = MOrphable Networked micro-ARCHitecture

MONARCH Chip Architecture

Rev 12-Mar-06

- Throughput 64 GOPS peak
 Multiple programming modes
- Reconfigurable, data flow
- -RISC scalar
- RISC SIMD (Altivec-like)

90 nm bulk CMOS

- Clock 333 MHz
- Power 3-6 GFLOPS/W

12 Arithmetic Clusters

- 96 adders (32 bits) fixed and float
- -96 multipliers

31 Memory Clusters

- -124 dual port memories
- -256W x 32 bits each (128KB)
- -248 address generators

>72 DMA engines

♦6 RISC processors

- 12 MBytes on chip DRAM
- 2 Bulk memory interfaces (8 GB/s BW)

2 RapidIO (serial) interface

- 17 DIFL ports (2.6 GB/s ea)
- On-chip ring 40 GB/s

MONARCH

DIFL =Differential Inter FPCA Link

QUAD MONARCH Module

High speed network connection built into MONARCH chips Standard connectors and interfaces – compatible with MC product line No support chips required – built in memory and high speed I/O interfaces

MONZ

DARPA

Architecture Description

Threaded mode – instruction stream operation

- RISC processor with extensions
- WideWord developed through morphing

Use this mode for complex code sets

Streaming mode – data flow stream operation

– Field Programmable Computing Array

Use this mode for high data rate and highest throughput

Morphing support

- FPCA configurable at very fine level
 - Data movement rich crossbar interconnections
 - Processing elements ALUs and registers
 - **RISC WideWord**

DIFL =Differential Inter FPCA Link

DIFL =Differential Inter FPCA Link

DIFL =Differential Inter FPCA Link

MONA

DIFL =Differential Inter FPCA Link

Threaded Processing Scalar RISC plus 256 bit wide word 8, 16, or 32 bit data Intermixed scalar and wide word instructions

FPCA Clusters For Streaming Data

FPCA Arithmetic Cluster

- Eight floating-point MALUs
 - 32b integer and floating point
 - Arithmetic/logical shifter
- Core interconnect fabric
 - Multiple links to 4 nearest neighbors

FPCA Memory Cluster

- 4 dual-port memories
 - 256w x 32b
 - Memories can be concatenated
 - Individual R/W address generators
- Simultaneous read/write
- **Core interconnect fabric**
 - Multiple links to 8 nearest neighbors

Streaming FPCA – Basic Paradigm

- Static mapping of function to H/W element
- Self synchronized dataflow (element "computes" when data available)
- Distributed control system for dynamic/data dependent operations
 - 32 bit data + 2 bits of token for control/status/condition code
 - Programmable Logic Array (PLA) in each element for control

Where MONARCH is Most Applicable

Embedded applications with 0.1->10 TFLOP throughput High data rate – Streaming Direct processing of multi GigaByte per second input streams Power, volume, weight constrained applications

Example of MONARCH benefits for Representative Space EO System

UAV RADAR/EO Signal Processor

Example of System on a Chip Two MONARCH Chips do Full Multi Mode Missile

Processing Card

Required Processing Millimeter wave radar processing Semi active laser IR Automatic target recognition EO tracker **RF tracker Fusion tracker** Gimbal and target estimation Guidance/control Navigation **Autopilot**

MONARCH

Chip Design

March 2006 Full Chip Route

Cu-08 90 nm bulk CMOS 18.76x18.76 mm die 1.5 km wiring 10M nets 282M placeable cells 333 MHz clock Selective clock gating 8 partition types Hierarchical design

MONARCH – Current Layout

- Standard cell ASIC
- 90 nm bulk CMOS
- 18.76mm x 18.76mm
- 1059 signal I/O
- 333 MHz
- ▶ 16 31- 42W

- AC Arithmetic Cluster
- ACNWW AC without RISC
- AC RISC AC with RISC and wide word
- HSS High Speed Serial I/O
- IC I/O Cluster
- MC Memory Cluster
- PBUF Parcel Buffer
- PLL Phase Lock Loop

ASIC Area Breakdown Full MONARCH chip

Physical design indicates good design fit; design fit is stable

Based on IBM's max die size of 352sq mm (18.76mm on a side)

MONARCH Transition Opportunities

Multiple potential transition users

- GPS single or dual chip embedded AJ + modes
- Space RF/EO applications front end processing + modes
- Airborne radar beam forming
- ATR F18 recognition algorithms
- Common interest and decision points are:
 - Performance (throughput, memory, and I/O)
 - Power and performance per Watt
 - Software development environment
- Rad hard community initiated independent reviews to assess hardening feasibility

Summary

 MONARCH processor provides high efficient embedded computing

- Software development station available now
- Chip in emulation/fabrication now
- First silicon December 2006
- Boards and demonstrations available in 2007
 - Transition evaluations underway
 - GPS antijam, software defined radio
 - Airborne wide band radar
 - Space applications EO/RF
 - Airborne ATR

Seeking additional transition programs

To ensure technology investments are actively used

