

HPEC Workshop 2006

New Process Technologies – Will silicon CMOS carry us to the end of the Roadmap?

Craig L. Keast, Chenson Chen, Mike Fritze, Jakub Kedzierski, Dave Shaver

- A brief history of CMOS scaling
- Drivers behind "Moore's Law" and their future outlook
- The potential of "Next Generation" technologies beyond silicon CMOS
- Some comments on 3D circuit integration
- Summary

A Few Metrics

- Vacuum tube (early 1900's) transistor (1949) integrated circuit- IC, "chip" (1959)
 - During the first 10 years of the chip's development the US government bought the majority of all ICs produced
 - Today the US Government purchases are a few percent of the market
- Today's microprocessors contain >500 million transistors and occupy ~2-3 cm² area
 - Equivalent number of vacuum tubes would cover an area equal to ~250 football fields
- First ICs cost ~\$120 and contained 10 transistors (\$12/transistor), today's microprocessors cost ~\$500 and contain 500,000,000 transistors (\$0.000001/transistor)
 - If this cost scaling was applied to the automobile industry a \$100,000 Porsche 911(turbo) would now cost < 1 cent

Silicon – The Material Enabling the IC

(Semiconductor Wafer Preparation)

HPEC 2006 -4 CLK 9/19/2006

Silicon's Oxide (SiO₂) is a KEY attribute of this material's success

35 Years of CMOS Scaling and Process Improvements

CLK 9/19/2006

- Smaller feature sizes
 - Pack more features in given silicon area
 Lower cost per function
 - Smaller transistors are faster
 - Smaller transistors and wires consume less energy
- Bigger chips
 - More functions on one chip reduces packaging and integration costs, reduces power, improves reliability
- Bigger wafer sizes
 - More chips per wafer; wafer processing cost for bigger wafers rises more slowly than number of transistors/wafer
- Manufacturing know-how
 - Faster machines, higher yields, better tool utilization
- More clever device, circuit, and process design
 - Pack more in a given area, even for a given feature size
 - "Equivalent scaling": next generation performance through improved process/materials: SiGe, SOI, strained silicon

Shrinking Feature Size....

HPEC 2006 -7 CLK 9/19/2006

~40,000 (65-nm node) transistors could fit on cross-section

Lithographic Tools

- Current State of the art (>\$25 M)
 - 65 nm resolution
 - $-\lambda = 193 \text{ nm}$
 - 0.93 NA (*n* sin*θ*)
 - > 10¹³ pixels/wafer
 - ~120 300-mm wafers/hour
 - Wafer & mask move 100's of mm/s during exposure

MIT Lincoln Laboratory

 $\mathbf{W} pprox \mathbf{k}_1 rac{\lambda/n}{\sin heta}$

 Rayleigh criterion for resolution W

 $\boldsymbol{W} = \boldsymbol{k}_1 \frac{\lambda \boldsymbol{l} \boldsymbol{n}}{\sin \theta}$

- 30x improvement in resolution over 25 years
 - $-\lambda$ from 436 nm to 193 nm
 - sin θ from 0.35 to 0.93
 - k₁ from 0.6 to 0.35
 - *n* from 1 to 1
- Now approaching limits
 - $\ \lambda \ \text{limited by materials} \\ \text{and sources}$
 - sin θ < 1</p>
 - $k_1 > 0.25$
 - *n*???

Liquid Immersion Interference 27-nm Half Pitch

- High-index fluids have been designed and synthesized ($n_{157} = 1.50$)
- Enable coupling of light from prism to wafer
 - No need for solid contact liquid gap of 2 μm is used

Slide Courtesy M. Rothschild, MIT-LL

Optical Lithography at the Nanometer Level

10 nm gold particle attached to Z-DNA antibody. (John Jackson & Inman. <u>Gene</u> [1989] 84, 221-226)

9-nm polysilicon gate on ultra-thin SOI fabricated at MIT-LL using 248nm PSM optical lithography (2001)

It is likely that we can pattern the smaller feature sizes needed to maintain CMOS scaling....

But will the devices work?

Prognosis For Moore's Law Benefits

- Historically, CMOS scaling has resulted in *simultaneous improvements* in cost per function, circuit (and system) speed, power consumption, and packing density
- Will continued scaling give us the same benefits?

Lower Cost Prognosis For Moore's Law Benefits

<u>Past</u>

- Scaling (s) increases components per unit area as s²
- Wafer size increase gives more chips per wafer
- ⇒Increasing cost of equipment outweighed by huge increase in number of transistors made per wafer

Future Issues

- Skyrocketing equipment costs...Today's state-of-the-art production facilities cost ~4 billion dollars
- NRE (e.g. >\$1M mask sets) and productivity issues favor large volume production of "generic" components
- Increasing consolidation/pooling of fabrication resources and use of Taiwanese "Super Fabs" TSMC and UMC (China and India next?)

⇒ How to get DoD-unique and secure components?

MIT Lincoln Laboratory

Lower Power Prognosis For Moore's Law Benefits

<u>Past</u>

- Supply voltage (V) scales as 1/s
- Capacitance (C) scales as 1/s
- Energy per op scales as CV2 \propto 1/ s3
- Voltage scaling from 5V to 1V accounted for 25X reduction in power, just by itself

Future Issues

- Power supply voltage only projected to drop 2X over next 15 years (1.0 to 0.5 V)
- Subthreshold device operation?
- Scaling energy per op is critical to long endurance battery powered systems and to supercomputers (getting power in and heat out)

Passive and Active Power vs Gate Length

E. J. Nowak, IBM J. Res. & Dev., Vol. 46, No. 2/3, p. 173

Higher Speed Moore's Law in Trouble

- CPU speed has stalled for the first time in 35 years, with no processor able to break through the "4-Ghz barrier"
- Why?...Gate oxide scaling has stopped at Tox~1.2nm in 2003, at the 90-nm technology node (~3-4 monolayers)
 - Only heroic integration efforts, such as use of strained-Si, have made small dents in the CPU speed barrier
 - Need a workable High-k gate dielectric in order for performance scaling to continue

MIT Lincoln Laboratory

Future High Performance Device "frontend" Possibilities

- Continue with Si CMOS. Some possible alternative silicon futures are:
 - CPU speed could be maxed out future improvements will come from reduced cost and higher density and integration
 - High-k could save the day if not tomorrow, maybe in 10 years

A perfect high-k gate dielectric will enable CPU speeds to increase until the next tunneling limit (source-todrain) at the 10nm-node

 Changes in device architecture could take the pressure off the gate oxide, and CPU speed will continue to advance at a slower rate

FDSOI and FinFET lets T_{si} scale instead of T_{ox}

Intel - components research (IEDM2003)

- A future with transistors, but without silicon:
 - Germanium-based devices
 Improved mobility, at the expense of many other semiconductor properties
 - Carbon-based devices. Several flavors:

Carbon nanotubes: Have better device properties than Si, but are very difficult to integrate (thus far)

Graphite devices: Difficult to turn off

Molecular devices: Have not been demonstrated to work better than Si

- A future without transistors:
 - Josephson-junction-based logic
 Demonstrated and works, but at 4K
 Real speed and power advantages unclear
 - Quantum Computation
 - Can't execute traditional code, even theoretically But can solve Schrödinger's equation blazingly fast, and factor very large numbers

- Cross Point Arrays nanowire, molecular
 - Too simple for general purpose logic, if complexity is increased to meet logic constraints the result is a transistor

- MEMS, protein, spin logic too early to evaluate

Spintronics – no evaluation possible, insufficient experimental data

Possible global directions for high performance logic technology in the next 20 years considered in this study, and graphical summary of their evaluations when possible

Future Technology Highlights: Carbon Nanotubes (CNTs)

- Example of experimental CNT device from Stanford
 - Features: metal gate, high-k dielectric, metal source/drain
 - > High performance: 10x Si device of same geometry
- Putting tubes were they are needed is a problem

MIT Lincoln Laboratory

Future Technology Highlights Thin Graphite - Graphene

REF: K.S Novoselov et al., Science, V. 306, 22 October 2004, p. 666

Few monolayer graphite device SEM and electrical characteristics at T=70K

- Graphite has high mobility of >10,000 cm²/Vs (~15x Si)
- Graphite is a semi-metal (semiconductor with band-gap of 0eV)
 - Difficult to turn off, a fundamental challenge
- Proven planar techniques could be used in fabrication
 - Planar geometry of devices eliminates majority of integration difficulties of carbon nanotubes
- MIT-LL has begun to explore this material system
 - Leveraging layer transfer, materials, and microelectronic fabrication expertise at the Laboratory

The Integrated Circuit Interconnect "backend" Challenge

MIT Lincoln Laboratory

*From 2005 International Technology Roadmap for Semiconductors (ITRS)

Wire Length Distribution in 90 nm Node IBM Microprocessor*

- >50% of active power (switching) dissipation is in microprocessor interconnects
- >90% of interconnect power is consumed by only 10% of the wires

HPEC 2006 -24 CLK 9/19/2006 MIT Lincoln Laboratory

Range of Wire in One Clock Cycle*

• 3D Integration increases accessible active devices

MIT Lincoln Laboratory

HPEC 2006 -25 CLK 9/19/2006

*After S. Amarasinghe, MIT Laboratory for Computer Science and Artificial Intelligence

Cross-Section of 3-Tier 3D-integrated Circuit

3 FDSOI CMOS Transistor Layers, 10-levels of Metal

HPEC 2006 -26 CLK 9/19/2006

- Transistor feasibility has been demonstrated to below ~10 nm gate lengths
- "Conventional" CMOS (Bulk, SiO₂ gate oxide, poly gates) faces significant challenges to scale below 45nm-node
 - Ultra-thin-body SOI, FinFET, Dual-Gate, Metal Gate, High-k
 - No new device technology has yet emerged that is expected to dethrone silicon CMOS
- Moore's Law scaling is showing its age and could run into serious speedbumps in the next few years (including economics), but the 2020 roadmap is theoretically feasible
 - Process technology improvements are no longer the performance drivers
- Future performance improvements will most likely come through circuit, system architecture, and software advancements