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While an emerging technology may seem promising and likely to provide 
the technical capabilities NASA requires, it may also present an
unacceptable risk to any exploration mission using it for the first time in 
space. The goal of NMP is to reduce the risks to, as well as the costs of, 
future NASA space science missions.

To meet it goals, the NMP identifies and selects leading-edge technologies 
that will increase the capability of future Science Mission Directorate 
missions. To identify the crucial technologies required, technologists are 
guided by the roadmaps of NASA's three mission areas: Sun-Earth System, 
Solar System, and Universe. The technical requirements outlined in these 
roadmaps are matched with technologies emerging from the national 
"pipeline" of current technology-development efforts. Once selected, these 
untried technologies are demonstrated on NMP in-space validation 
missions. 

New Millennium Program (NMP) – Mission Statement
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New Millennium Program (NMP) – ST-8 Project

ST-8 Mission

Top Level Requirements:
• Demonstrate and validate four (4) ST-8 technology 
advances in a relevant space environment

- Environmentally Adaptive Fault-Tolerant Computing 
(EAFTC) experiment *

- Miniature Loop Heat Pipe (MLHP) experiment
- Next Generation Ultraflex (NGU) experiment
- SAILMAST experiment

• Operate in space for at least 6 months

* Relevant space environment for EAFTC experiment is defined as a stressing  
application executing in the worst radiation environment expected for early
adopter missions
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New Millennium Program (NMP) – ST-8 Schedule (1)
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New Millennium Program (NMP) – ST-8 Schedule (2)
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• Similarly, deep space probes as well as 
Earth orbiting instruments can benefit from 
increases in on-board processing 
capabilities

• In all cases increases in science data 
returns are dependant on the spacecraft’s 
processing platform capabilities

Processing Platforms for New Science

• The success of recent rover missions are a
perfect example of the type of science we 
want to support

• Though returns from rover missions are 
significant they could be orders of magnitude 
greater with sufficient autonomy and on-board
processing capabilities
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EAFTC Experiment Overview - Technology Advance

• A spacecraft onboard payload data processing system 
architecture, including a software framework and set of fault 
tolerance techniques, which provides:

A. An architecture and methodology that enables COTS based, high 
performance, scalable, multi-computer systems, incorporating 
reconfigurable co-processors, and supporting parallel/distributed 
processing for science codes, that accommodates future COTS 
parts/standards through upgrades.

B. An application software development and runtime environment that
is familiar to science application developers, and facilitates porting 
of applications from the laboratory to the spacecraft payload data 
processor. 

C. An autonomous and adaptive controller for fault tolerance 
configuration, responsive to environment, application criticality and 
system mode, that maintains required dependability and availability 
while optimizing resource utilization and system efficiency.

D. Methods and tools which allow the prediction of the system’s 
behavior in the space environment, including: predictions of 
availability, dependability, fault rates/types, and system level
performance.
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EAFTC Hardware Architecture
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EAFTC Software Architecture
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Methodology for Migrating COTS Technology to Space

Orbit
Parameters

(
Epoch

Time Frame)

Spacecraft
Shielding

SpaceRad *

Total Dose:
• Trapped Protons
• Trapped Electrons
• Solar Protons

SEE Rates:
• Cosmic Rays
• Solar Protons
• Trapped Protons

Candidate
Application

Requirements/
Constraints

Effective SEE
Model

Utility Analysis
Modelss

Key:

- Inputs/Output

- Model

Recommended
Flight System

Implementation

Candidate SW FT Techniques

Hardware Architecture

Candidate HW FT Techniques

Parts Radiation
Characterization

Da ta

* The Space Rad tool which includes multiple earth magnetic field 
and solar activity models

ST-8 Model:
Radiation Effects/HW SEU 

Susceptibility Model

ST-8 Models:
Fault Model
Availability Model
Performance Model

Design Validation

Addresses Technology Advance component D



12

EAFTC Model Flow 
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EAFTC Technology Advances to TRL7 Flight Experiment
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Technology Validation Plan
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EAFTC Flight System



16

ST-8 EAFTC Level 1 Requirements
The EAFTC High Performance COTS Computing Experiment shall validate that the 
technology is capable of:

• Providing a minimum of 100 MIPS/Watt of sustained general purpose parallel 
processing throughput when applied to scientific data processing in the nominal
(non-solar flare) LEO and GEO natural space radiation environments  
(Requirement 1.0-1)

• Providing 0.995 reliability and 0.995 availability over a 5 year mission in LEO and 
GEO environments by applying the data obtained during the in-space validation 
experiment to the system models developed during the formulation refinement and
implementation phases
(Requirement 1.0-2)

Rationale:  If EAFTC technology is to be successful, the primary service it must deliver high
throughput density (MIPS/watt) to the science application with high reliability and 
high availability.  In order for EAFTC technology to be of interest to the science 
community, it must provide at least 10X the throughput density of an alternative 
radiation tolerant system. Providing high throughput density alone is insufficient. 
Providing high throughput density with low availability delivers low effective system 
utilization to the application.  The system must be able to meet the reliability 
requirements for a long term, i.e., at least a 5-year, science mission. EAFTC 
technology must be applicable to wide variety of future mission applications.
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Relevant Space Environments
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Relevant Space Environment – Heavy Ion Spectrum
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Relevant Space Environment - Proton Energy Spectrum

The 1470km orbit is the selection for ST-8 proton design criterion 
since it is an upper bound of the other candidate environments. 
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Relevant Space Environment ST-8 Mission Orbit

• Based upon radiation effects analysis completed to date, >6000 upsets 
are expected in the proposed 4-month EAFTC flight experiment

- >50 upsets per day

• Three candidate science applications are being considered for the flight
experiments:  2D FFT, LU Decomposition, science application NASA GFSC
Developed for the REE program

- all of these applications can be tailored to: 1)  stress the EAFTC system, and 
2) fit within the hardware capabilities of the EAFTC Flight Experiment Payload 
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Experiment System
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SEU Fault Tolerance Experiment Data Collection
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TRL5 Hardware Architecture
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EAFTC Software Architecture (TRL5+)
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Links in Red are HAM DMS based communication links.
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EAFTC Software Components Collaboration

• EAFTC Middleware Components
- Environmental Sensor Monitor (ESM)
- Job Management Services (JMS)

-- Job Manager (JM) + Job Management Agent (JMA)  
- Fault Tolerance Management Services (FTMS)

-- Fault Tolerance Manager (FTM) + Fault Tolerance Management Agent 
(FTMA)
- High Availability Middleware Services (HAM)
- Message Passing Interface (MPI) 
- FPGA Co-Processor Services (FCPS)
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Status

• Successful TRL 4 demonstration for ST-8 Phase A TMA 
(Technology Maturity Assessment)

- parallel processing platform with FPGA co-processor acceleration
- environmental adaptivity

-- environmental sensing alert generation & response
-- replicated services (SCP, TMR, etc.)
-- application/process priority
-- system operating mode

• Successfully passed TRL5 E-SRR (Experiment – Systems 
Requirements Review) gate

• Successfully demonstrated the easy porting of HA Middleware on a
number of platforms with a variety of PPC engines (750FX, 970, &
603e) with VxWorks and a variety of Linux OS (Monta Vista, Yellow 
Dog, Red Hat)

- conducted several demonstrations, e.g.,
-- checkpoint and fail-over model
-- checkpoint and fail-over application on active, standby, and

unassigned nodes
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Future Plans 

• Get through the normal TRL5 NMP “gates” to move on to Phase C 
(Implementation Phase) 

• TRL5 spiral development and testing
- emphasis on high performance fault-tolerant cluster

processing
- SWIFI (Software Implemented Fault Injection) 
- addition of ABFT (Algorithm-Based Fault Tolerance) capability

• Conduct successful TRL5 TMA demonstration

• Radiation characterization of key, but as yet untested, COTS 
components

- processing node bridge ship
- high performance network switch



30

Summary & Conclusion 

• Environmental adaptivity encompasses more than responsiveness to the radiation 
environment

- functional criticality
- application/process priority
- system operating mode

• Environmental adaptivity is only a part of EAFTC technology

• Focus of Phase B EAFTC technology development is on high performance, fault-
tolerant cluster processing for science applications

• EAFTC technology is equally applicable to other application domains

- rovers
- landers
- UAVs
- rad hard space applications

• Unlike previous attempts to migrate high performance COTS processing to space 
(Space Touchstone, REE, ISAC), the NMP ST-8 program has “legs”

- NASA NMP is providing the ride
- Orbital Science Corporation has been selected to be the S/C provider
- Pegasus has been selected as the launch vehicle
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