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Overview

e Conformal Computing: streamlining computation
and shedding light on physics

e Breakthroughs obtained by restructuring
(reshaping) multidimensional arrays to suit the
problem and processor/memory/FPGA hierarchy

e Significant advances: FFT factors of 2 to 4
speedup
e Bit Reversal = multi-dimensional transpose
» Fortran 95 definition is MoA definition
e Fundamental view: The Hypercube

e This talk: Conformal Computing and Density Matrices
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Virtual Arrays

Connecting the Algorithm-Software-Hardware Boundary
(ideally the Physics-Algorithm-Software-Hardware)

e Array restructuring: reshape-transpose
— An algebra of arrays and index calculus
e MoA and Psi calculus:
e Conformal Computing
e Mullin-Raynolds Conjecture:
e Second Fundamental Theorem of the
Psi Calculus: Reshape-Transpose

e First, is the Psi Correspondence Theorem(PCT)

e Mullin and Jenkins, Concurrency: Practice and
Experience 9-96
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Data Structure insights

« The structure of density matrices

— What is the structure really?
— Is the matrix the ideal way of seeing a quantum
algorithm?
e Are there other representations more ideal?

e Must we always use Permutation Matrices to
permute indices?

e Can we envision a quantum algorithm?
— Hypercubes: 2 space
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Reshape-Transpose

e Array restructuring: reshape-transpose
— Restructure the density matrix

— Restructure to lift dimension to match
processor/memory/FPGA hierarchy.

— View qubits as coordinates in a hyperspace

— Reshape-transpose and hypercube common
themes in FFT:

— bit reversal is hypercube transpose

— transpose vector to define butterfly in FFT

— transpose vector to define cache loop in FFT
» Computer Physics Communications
» Materials Research Society
» Digital Signal Processing

- NO Permutation Matrices and NO Matrix
Multiplication to permute indices
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Example: Block Decomposition
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Array ‘“shapes”

 Shape operator: preturns a vector containing the lengths of

each dimension
ph=(44

 Total number of components in A is 16.
pA =(2222)

« Shape of A (two-dimensional):

« Shape of A’ (four-dimensional):

e Shapes are factors of the total number of components.

* Factors fit the physics and factors fit the levels of
processor/memory/FPGA/...
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“Reshape” Operator

0 1 2 3 2-dimensional
The process of “lifting” the
4 5 6 7 dimension is carried out with
A - the “reshape” operator
8 910 11
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“Transpose” operator

« Transpose operator ¢ permutes the dimensions

A=

transpose vector

\

A" =(0213)pA'=
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“Hypercube” Representation

e The arrays A’and A” are examples of “hypercubes”
» multi-dimensional unit-cubes

« Often array operations simplify in the hypercube
representation, e.g. bit reversal, permutations

 In ahypercube: all dimensions have length 2

« A hypercube allows the input vector to be viewed in the
highest dimension possible.

« Across dimensions every component can be related to
every other component, i.e. permutations are easily made.
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The punch line

« Through direct indexing, arbitrary data re-arrangements
can be performed in ONE STEP

« This leads to exceedingly efficient computation

 Fundamental perspective: by viewing the data in
computation in the most general way is leading to new
insights into the underlying physics

* Notice ALSO: all the squares on the diagonal can be
accessed in parallel, l.e. over the primary axis index or
processor index(or cache index or whatever we are using).
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Computation and Gates

« From Classical to Quantum Gates
— Classical XOR
e Diagram
« Boolean Algebra
 Logic Expression: Boolean Table
— Reversible XOR: Controlled NOT
e Diagram
 Boolean Table
— Quantum NOT: Reversible
 Linear Algebra

CCl & CNE
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From Classical to Quantum
Computing

* Basic Gates in Classical Computers
« and, or, not
» Basic Gates in Quantum Computers
e not, controlled not, controlled- controlled not
Major Differences
» ONE state versus ALL states
* Boolean Algebra versus Linear Algebra
* Irreversible versus Reversible
computation
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. __[>" ) Classical Xor 2vitsin 10ut

Xy Xor(x,y)
000
101

(Xeo y)+ (Y ° X 011

) 110

{>= (x=0)&(y=1)) | (y=0)& (x=1))

Reversiblexor 2uitsin 20ut

Controlled NOT (classical implementation)

cnot(x,y)
XyXx'y
1011
' 0101
y X y
1110
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Some Notation

=‘O> or :‘1>

0

« Use matrices to denote states
*The above are basis states in an abstract
space (Hilbert space).

* Linear Algebra to relate gate operations

» Classical states use Boolean Algebra

CCl & CNE University at Albany e
042105-Irm-16 State University of NY

Irm 10/31/05



Basis states: what are they, really?

e Physical example: the states ‘O> and ‘1> can be realized as
the spin-down and spin-up states of a spin-1/2 particle such
as an electron.

e States (information) are manipulated through the
application of electro-magnetic fields.

« Example: application of an EM pulse can flip a state from
down to up (just like in Nuclear Magnetic Resonance
spectroscopy).

P(1) = a(t)|0)+ A(1)|D)
a(0)=150)=0 = a(7)=05(7)=1
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Some Notation (cont.)

e General state: superposition (linear combination)
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Higher Dimensions

 Basis states in higher dimensions from Cartesian products

of ‘O> and ‘1>

e For example OO>:‘ >‘O>

« A general state is a linear combination of these basis states in
this 4-dimensional space:
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Example: CNOT(controlled not)

¥ = (00> + B|1>)[0> = 000> + B|10> =

Y =

CNOT =

CNOT VY=
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Physical Observables

» Measurable quantities  A(t)calculated as
averages of operators: A(t)

 Wave function vs. density matrix representation
A(t) = (10 A®)] (1)) = TIA AW)]
Tr[éﬁ] — Zalmbml
Im

: State University of NY



Quantum Simulation

e Quantum simulators: we can’t build many qubit
quantum computers YET

« One method: density matrix method

Computations are Gate Operations

Gate Operations are Matrix Operations

Linear Algebra

Algebra of Arrays(MoA): Algorithm and Architecture
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Industrial applications

e GE-Lockheed Martin Objectives
— Flexible extensible simulator for quantum algorithms
— Provide high performance throughput

 Advanced Architectures: NEED portable, scalable designs,
optimal performance.

o May include multiple processors, levels of memory,
FPGAS.

o SGI MOATB
o Cray XD1
 Exploit sparseness and structure of gate operators
« Simulate systems with more than 14 qubits
* In a Quantum Computer we require in excess of 231 bytes
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Simulations

Why simulate?

Quantum computers are difficult to build
 Usually small laboratory experiments: 4-5 qubits

Major error mechanisms can be modeled
« Hardware imperfections and physical phenomena

Simulation allows observation of intermediate states
* Reversible conventional gates

Use the simulator to explore quantum algorithm development
for digital and image processing applications, e.g. FFT
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Density Matrix ," « ," to Quantum Density
Hypercube
2-d to 2n-d

e One qubit: 2 by 2 matrix
e two qubits: 4 by 4 matrix
e three qubits: 8 by 8 matrix

Goal: Create a Quantum Algorithm to perform n qubit-gate
operations that is true to the physics AND computational
platform. Thus, all designs are verifiable, and scalable to
existing AND emerging architectures.
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Density Matrix ," « ," to Quantum Density
Hypercube

2-d to 2n-d

 View the qubits as coordinates in the Quantum
Density Hypercube
» Create a permutation vector that will be used to perform a
multi-dimensional transpose on the Quantum Density
Hypercube.
e The result of this transpose aligns matrices on the
diagonal of the original Density Matrix

« Gate is then applied, again noting the gates can be applied in
parallel , i.e. the processor index is the primary axis index.
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Density Matrix," y ," to Quantum Density
Hypercube

2-d to 2n-d

* The design and subsequent implementation uses the
least amount of resources.

* Normal forms after MoA and Psi Analysis,
yield a generic design independent of platform.
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Qubits, Indices, and Permutations

Example: 16 by 16 Density Matrix becomes a
28 Quantum Density Hypercube

Note that the design is for 2" by 2" , 0<=n, n in I*
AND any number of bits.

Recall the xls file previously shown
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Qubits, Indices, and Permutations

Assumptions in the Example:

 Let aand b denote which bits to gate:
oxxab: bits 0 and 1 axxb: bits 0 and 3

* bits are numbered from right to left:
®1110is used to evaluate its decimal equivalent
(1*23) +(1*22) + (1*21 )+ (0* 20)
* indexing is numbered from left to right

® As avector,<1110> when indexed would yield:
<11103>[0] =1

<1110>[3] =0
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Qubits, Indices, and Permutations

Example(cont.): From qubits to permutation vector
e bits 0,2: xaxb -> 3210 3210 bitordering
0123 0123 index ordering
0213 0213 bit2isindex 3

swap bits 1 and 2
<02134657>is thetranspose vector

 bits 1,2: xabx ->3210 3210 bitordering
0123 0123 index ordering
0132 0132 swap bits2and 3
0312 0312 swap bits1and?2
<03124756>is the transpose vector

*bits 0,3: axxb -> <21036547>
e bits 1,3: axbx -> <31027546>
e bits 2,3: abxx -> <23016745>
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From Permutation Vector to the Diagonal

—

Given: a permutation vector denoted by L, the transpose vector,
permute all indices.

* Apply binary transpose after reshaping(restructuring) the
density matrix into a density hypercube.

» Permute all indices as defined by the transpose vector

» Gated arrays are now on the diagonal.
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From Permutation Vector to the Diagonal

* Indices are calculated and addressed directly from the
original array stored in memory:

»Algebraically the Physics

»Algebraically all at once

»Algebraically decomposable to present and future
architectural platforms(even quantum)

»Algebra remains the same throughout
»>the problem,
»>the decomposition over processor/memory/FPGA,
»>the mapping,
»>the architectural abstraction,
»>verifiable designs
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The General Expression
Moa and Psi Reduction

leen DM s.t. pDM = < 2" 2">, restructure to ahypercube QDH.
Lets denote the shape of QDH s.t. s= <2n p- 2>
= <2..22 >
2n

Then QDH =s p" DM
Use t, the transpose vector previously defined.
Perform the binary transpose:

t Q QDH
Now, all matrices defined by bits chosen are on the diagonal.
Note: Restructuring back to DM and indexing creates no new
arrays because of Psi Reduction.
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The General Expression
Moa and Psi Reduction

t O QDH

e This expression moves all gated coordinates to the diagonal
(after reshaping) of DM.
e This expression describes the Physics in one operation.
 Now Psi Reduce to normal form -> Generic Design.
forall 1 st. 0<=i < 22n
1= 7 (i;s)
@DM +y(i ;s )
This is the Generic Normal Form
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Conclusions

« MoA and Psi Calculus quantum algorithm for density matrix
optimizations.

— Describes the physics naturally.
— (ubit access and gate application.
* Independent of number of qubits.
* Independent of density matrix size.

— Describes decomposition and mapping.
 Multiple processor/memory levels.

— Normal form is a generic design independent of target
architecture, ideally the physics directly.
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The punch line

 Through direct indexing, arbitrary data re-arrangements
can be performed in ONE STEP

« This leads to exceedingly efficient computation

 Fundamental perspective: by viewing the data in
computation in the most general way is leading to new
insights into the underlying physics
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Future Directions

« Fundamental concepts: reshape-transpose,
hypercube representation...just beginning to be
explored

e Connections with quantum algorithms: Quantum
FFT, Shor’s factoring algorithm, etc

* Highly efficient practical designs for today’s (and
tomorrow’s) computers!
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Thank you
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