
Mackenzie 1
HPEC, 22-Sep-2005

r eser voi r abs

A Streaming Virtual Machine for GPUs

Kenneth Mackenzie (Reservoir Labs, Inc)
Dan Campbell (Georgia Tech Research Institute)

Peter Szilagyi (Reservoir Labs, Inc)

Copyright © 2005
Government Purpose Rights,
All Other Rights Reserved

Mackenzie 2
HPEC, 22-Sep-2005

r eser voi r abs

Goal: Compile to PCs w/GPUs

foo.c

CPU

DRAM

GPU

VRAM

12 GFLOPS

6.4 GB/s

45 GFLOPS

38 GB/s

Mackenzie 3
HPEC, 22-Sep-2005

r eser voi r abs

Barriers to General-Purpose Use

• Hardware:
– Severe GPU programming restrictions!

y=f(x) applied in parallel over an array, y.
– CPU<->GPU bottleneck: 4GB/s

• Compiler:
– No existing streaming compiler

• Abstraction:
– GPU drivers built for graphics
– Driver and hardware details are

proprietary

host
proc. GPU

12 GFLOPS

6.4 GB/s

45 GFLOPS

38 GB/s

DRAM
VRAM

Mackenzie 4
HPEC, 22-Sep-2005

r eser voi r abs

Subgoal: Build and Evaluate an Abstraction atop GPUs

• Hardware:
– Severe GPU programming restrictions!

y=f(x) applied in parallel over an array.
– CPU<->GPU pipe: 4GB/s

• Compiler:
– No existing streaming compiler

• Abstraction:
– GPU drivers built for graphics
– Driver and hardware details are

proprietary

GPU vendors working on
more general functionality

Reservoir and others
working under DARPA
Polymorphous Computing
Architectures (PCA)
program

This project: implement
PCA’s Streaming Virtual
Machine (SVM)
abstraction atop GPUs
and evaluate it.

Mackenzie 5
HPEC, 22-Sep-2005

r eser voi r abs

Status; Related Work

• Status: in-progress
– Runs simple programs end-to-end

• Must spoon-feed programs through the not-quite-GPU-aware
streaming compiler.

– Experimenting with feedback

• Related Work:
– BrookGPU, Ian Buck, et al (Stanford), SIGGRAPH, 2004.
– PUG, Mark Harris (nVidia), GPU Gems 2, 2005.
– Sh, Michael McCool, et al (Waterloo), Graphics Hardware 2002.

– All are programmer interfaces, not compiler targets.

Mackenzie 6
HPEC, 22-Sep-2005

r eser voi r abs

Outline

• Background on GPUs (2 slides)

• Streaming Virtual Machine

• Prototype SVM Toolchain

• Results

• Future Work

Mackenzie 7
HPEC, 22-Sep-2005

r eser voi r abs

GPUs

• GPUs implement the last few stages of a standard 3D graphics
rendering pipeline.

• Recent GPUs employ embedded multiprocessors (e.g. 24-way
SIMD) for programmability in several the stages.

• Trend is toward more generality and wider multiprocessing.

Illustration: from Cg Toolkit User’s Manual, nVidia corp.

Mackenzie 8
HPEC, 22-Sep-2005

r eser voi r abs

GPUs for non-Graphics Programs

• Use the “fragment processor” embedded multiprocessor only.
– Ignore for now potentially useful but mind-bending hardware

goodies.
• Place data arrays in textures.
• Compute y=f(x1, x2, ...) where y, xs are textures and f() is a

function of any entries in the xs onto each entry in y.

• Many and serious restrictions:
– No-scatter constraint: gather from xs but no scatter to y
– No local storage; no loop-carried dependencies.
– Ops are 32-bit, not-quite-IEEE floating-point; no integer.
– Branches permitted but penalized by SIMD architecture
– Byzantine limits/costs on the complexity of f()
– Substantial startup overhead; N1/2 in 1000s

Mackenzie 9
HPEC, 22-Sep-2005

r eser voi r abs

Streaming Virtual Machine

Mackenzie 10
HPEC, 22-Sep-2005

r eser voi r abs

DARPA Polymorphous Computing Architectures (PCA)
Tiled Multiprocessors

• Chip multiprocessors built of replicated tiles
• Architectural novelty: mechanisms for combining tiles into

larger units
• “Polymorphous”: configure the hardware to match the

application, e.g. “threaded” vs. “streaming”

MIT
RAW

ISI/Raytheon
Monarch

UT Austin
TRIPS

Stanford
Smart Memories

Mackenzie 11
HPEC, 22-Sep-2005

r eser voi r abs

PCA Toolchain

• Two-level compilation factors the compilation problem.
• SVM is one abstraction and path through the toolchain.

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Binaries

Low Level Compilers (LLC)

TRIPS MONARCH Smart Memories RAW Others...

High Level Compilers (HLC)

Virtual Machine API

Machine Model
Metadata Context

SVM
TVM-HAL

UVM

Mackenzie 12
HPEC, 22-Sep-2005

r eser voi r abs

SVM Slice of the PCA Toolchain

foo.c mm.xml

High-Level Compiler

foo.svm.c

Low-Level Compiler

SVM AbstractionSVM Code: C “kernels” for
the stream processors, C
w/SVM API calls for control.

SVM Code: C “kernels” for
the stream processors, C
w/SVM API calls for control.

SourceSource

foo.svm.exe

Machine Model: processors,
memories, interconnect in SVM-
specified format.

Machine Model: processors,
memories, interconnect in SVM-
specified format.

LLC-to-HLC feedback
(undefined)

LLC-to-HLC feedback
(undefined)

Mackenzie 13
HPEC, 22-Sep-2005

r eser voi r abs

SVM Details

• Machine Model: abstract architecture description in terms of
processors, memory units, dma unit and interconnect in some
topology.

• High Level Compiler: parallelizes, maps and schedules
computation, storage and communication onto the machine
model resources.

• Low Level Compiler: a hardware-specific uniprocessor
compiler.

Mackenzie 14
HPEC, 22-Sep-2005

r eser voi r abs

SVM Detail: R-Stream High-Level Compiler

• Map and schedule computation,
storage and communication

• Reservoir’s R-Stream
– Oriented to static computation,

e.g. radar front-end.
– Converts loop bodies to kernels

sized to fit local memory
constraints.

– modulo-schedules kernels on
stream processors in a macro-
pipeline.

Loopnest 1

Loopnest 2

Loop nest 3

Loop nest 4

tim
e

modulo
schedule

processors

initiation interval

Mackenzie 15
HPEC, 22-Sep-2005

r eser voi r abs

SVM Detail: R-Stream High-Level Compiler

#pragma res parallel
doloop (int i = 0; i < N; ++i) {

z[[i]] = a * x[[i]] + y[[i]];
}

Input is “Gumdrop”: an annotated C

static void main_kernel_work_0(struct kernel_data_tag_0 *d) {
int i;
int const hlc_hi_i = d->i_max;
for (i = d->i_min; i < hlc_hi_i; i++) {
float _t, _t_1, _t_2;
SVM_BLOCK_READ(d->x_block, i - d->x_block_offset_0, &_t_2);
SVM_BLOCK_READ(d->y_block, i - d->y_block_offset_0, &_t_1);
_t = d->a * _t_2 + _t_1;
SVM_BLOCK_WRITE(d->z_block, i - d->z_block_offset_0, &_t);

}
}
// ...

Output is SVM: C for kernels (shown)
plus C w/API calls to invoke kernels (not shown)

Mackenzie 16
HPEC, 22-Sep-2005

r eser voi r abs

Prototype SVM-GPU Toolchain

1. Machine Model
2. Low-Level Compiler
3. Runtime

Mackenzie 17
HPEC, 22-Sep-2005

r eser voi r abs

Toolchain (HLC)

foo.c svmgpu.xml

High-Level Compiler:
R-Stream

foo.svm.c
SVM Abstraction

1. Machine Model:
Processors, Memories/Interconnect
in SVM-specified format

1. Machine Model:
Processors, Memories/Interconnect
in SVM-specified format

SVM Code: control + kernelsSVM Code: control + kernels

Source: R-Stream’s
“Gumdrop” (C +
abstract arrays)

Source: R-Stream’s
“Gumdrop” (C +
abstract arrays)

Mackenzie 18
HPEC, 22-Sep-2005

r eser voi r abs

Toolchain (all)

foo.c svmgpu.xml

High-Level Compiler:
R-Stream

foo.svm.c

SVMGPU
translator

foo.svmgpu.c

MSVC/other
compiler

foo.svmgpu.exe svmgpu.dll

Cg compiler
OpenGL Runtime

SVM Abstraction

1. Machine Model:
Processors, Memories/Interconnect
in SVM-specified format

1. Machine Model:
Processors, Memories/Interconnect
in SVM-specified format

3. Runtime: SVM
implementation w/
extensions for Cg

3. Runtime: SVM
implementation w/
extensions for Cg

SVMGPU Code: C control
code + Cg kernel code.

Source: R-Stream’s
“Gumdrop” (C +
abstract arrays)

Source: R-Stream’s
“Gumdrop” (C +
abstract arrays)

SVM Code: control + kernelsSVM Code: control + kernels

2. Low-Level Compiler:
• Translator to C + Cg,
• MSVC compiler
• nVidia Cg compiler

2. Low-Level Compiler:
• Translator to C + Cg,
• MSVC compiler
• nVidia Cg compiler

Mackenzie 19
HPEC, 22-Sep-2005

r eser voi r abs

1. Machine Model

• Model the GPU as one fast processor (the fragment shader).
• Model the VRAM as local memory.
• Model a GPU “i-cache” to indicate limited program store
• Model DMA between DRAM and VRAM although hidden by driver.

• Handles multiple GPUs (duplicate VRAM and DMA to match)
• Handles multiple CPUs

CPU
12GFLOPs

GPU
48GFLOPs

DMA
4GB/s

DRAM
1GB,

6.4GB/s

VRAM
256MB,
38GB/s

“i-cache”
64KB

Mackenzie 20
HPEC, 22-Sep-2005

r eser voi r abs

Machine Model Approximations

• No model of extra hardware features, e.g. interpolation, z-sort
– Use of these features is likely limited to libraries

• No model of SIMD details: startup cost, branch cost
– Fixable

• No model of the no-scatter constraint
– Conceivable in SVM’s machine model schema but R-Stream does not

currently understand it.

• No model of detailed resource constraints
– Number of registers (shader programs cannot spill registers)
– Cost of instruction combinations
– Cost of register usage vs. # of threads
– Note: much of this detail is impossible to model precisely!

Mackenzie 21
HPEC, 22-Sep-2005

r eser voi r abs

2. Translator

• What it is:
– SVM (C) to SVMGPU (C + Cg) translator
– Combines with vendor C and Cg compilers to form an SVM “Low-

Level Compiler”

• Compact experimental prototype
– 1400 lines of SML

Mackenzie 22
HPEC, 22-Sep-2005

r eser voi r abs

Translator Operation

• Translates kernel bodies to Cg fragment shader programs
– Outermost loop in a kernel removed (becomes hardware

rasterization)
– Input arrays become Cg textures
– Input loop-invarient values become Cg uniform parameters
– Output arrays become Cg out parameters

• Translates the outermost loop in kernels to hardware
rasterization
– Fragment program invocation over a block of data
– Block extents given by loop bounds

• Checks correctness conditions at compile- and/or at runtime
– check no-scatter constraint
– A kernel that fails this check is run on the CPU instead of the GPU

Mackenzie 23
HPEC, 22-Sep-2005

r eser voi r abs

3. Runtime

• Implements SVM functionality

• Includes support for SMP/clusters of CPUs and multiple GPUs

• Built atop OpenGL, Cg, nVidia/ATI drivers, and Windows.

• Compact experimental prototype
– 2300 lines of C

Mackenzie 24
HPEC, 22-Sep-2005

r eser voi r abs

Runtime Operation

• Manages textures as storage for SVM blocks

• Executes Cg code for translated SVM kernels
– Falls back to running the kernel on the CPU if Cg compilation fails

• Implements DMA kernels using OpenGL calls

Mackenzie 25
HPEC, 22-Sep-2005

r eser voi r abs

Results

Mackenzie 26
HPEC, 22-Sep-2005

r eser voi r abs

Results

• Quantitative:
– Successfully executes simple programs.
– Still tuning to reduce overhead to the level of BrookGPU.

• Qualitative:
– GPUs

• The no-scatter constraint is the most serious.
• The no-local-storage constraint is the next worst.

– R-Stream
• Needs to recognize the basic GPU constraints to be automatic.
• We can work around this in source code for experiments.

– SVM
• C is tough to translate; the HLC’s analyses are lost.
• Feedback is necessary.

Mackenzie 27
HPEC, 22-Sep-2005

r eser voi r abs

Result: SAXPY Execution Time

0

50

100

150

200

250

300

350

0 5 10 15 20
log2(nelements)

m
ill

is
ec

on
ds

SVM-GPU
Brook

Mackenzie 28
HPEC, 22-Sep-2005

r eser voi r abs

GPU Kernel Constraints

• Fragment programs write outputs exactly once, in-order.
• Fragment programs have no local storage.

• R-Stream currently doesn’t recognize the constraints and will,
e.g., fuse together GPU-friendly loops into one GPU-unfriendly
loop.

• Workaround: mark loops separately.

#pragma res parallel
{

for (i = 1; i < N; i++) {
y[i] = x[i - 1] + x[i];

}
for (i = 1; i < N; i++) {
z[i] = y[i - i] + y[i]

}
}

Mackenzie 29
HPEC, 22-Sep-2005

r eser voi r abs

Feedback

• Feed-forward via the machine model is preferable
• Feedback is inevitable

– Some constraints are impractical to model or to solve
– Some constraints are unknown/proprietary
– Conservative interpretation of constraints is sub-optimal

• Feedback makes the compilation process a search

• What kind of feedback is available when:
– From the translator (arbitrary but imprecise)
– From Cg (pass/fail, little else without vendor assist)
– From trial execution of code (performance)

Mackenzie 30
HPEC, 22-Sep-2005

r eser voi r abs

Summary and Future Work

• A Streaming Virtual Machine for GPUs
– Machine model
– Low-level compiler built via a translator to C + Cg
– Runtime atop ATI/nVidia targets

• Work in progress:
– Characterize feedback requirements and propose mechanisms

• Future work:
– Supporting library code; optimization across libraries.
– Exporting special hardware features via SVM.

