
22 September 2005

RapidIO-based Space System Architectures
for Synthetic Aperture Radar
and Ground Moving Target Indicator

David Bueno, Chris Conger, Adam Leko,
Ian Troxel, and Alan D. George

HCS Research Laboratory
College of Engineering

University of Florida

22 September 2005 2

Outline

I. Project Overview
II. Background

I. RapidIO (RIO)
II. Synthetic Aperture Radar (SAR)
III. Ground Moving Target Indicator (GMTI)

III. Model Library Overview
IV. RapidIO Experimental Testbed

I. Overview
II. Validation results

V. Simulation Experiments and Results
VI. Conclusions

22 September 2005 3

Project Overview

Simulative analysis of real-time Space-Based Radar (SBR)
systems using RapidIO interconnection networks

RapidIO is a high-performance, switched interconnect for
embedded systems

Experimental validation of simulation models using a
RapidIO hardware testbed

Image courtesy [6]

Sensitivity analysis of GMTI and SAR to RIO
network and algorithm parameters

Uses discrete-event simulation of RapidIO
network, processing elements, and SBR
algorithms
Examine considerations for designing RIO-
based systems capable of both SAR and
GMTI

22 September 2005 4

Background: RapidIO
Three-layered, embedded system interconnect architecture

Logical layer, transport layer, physical layer
Point-to-point, packet-switched interconnect
Peak single-link throughput ranging from 2 to 64 Gb/s
Focus on 16-bit parallel LVDS RIO design for space systems

Image courtesy [7]

22 September 2005 5

Background: SAR
SAR used to take broad-range, high-resolution snap-shots of
surface features from satellites, even at night or inclement weather
Data set is 2D image or matrix, with range and pulse dimension

Typical data size is 2GB, each matrix element a 64-bit complex integer
Due to large data set size, image processed iteratively in chunks

Figure below illustrates each stage of algorithm
Color denotes partitioning (see legend to right of picture)
Blue lines/blocks represent communication events

Processors write data back to global memory for repartitioning
after processing completes in each subtask, if necessary

Sensor
Endpoints

Global Memory

Pulse
FFT

Auto-
focus

Range
Pulse
Comp.

Polar
Refor-
matting

1st half
2D FFT
(range)

2nd

half
2D
FFT

(pulse
)

Magni
-

tuding

Range Dimension

Pulse Dimension

Range/Pulse Blocks

22 September 2005 6

Background: GMTI

GMTI used to track moving targets on ground
Incoming data organized as 3-D matrix (data cube)

Data reorganized between stages for processing efficiency
Real-time processing deadline for each cube defined as Coherent
Processing Interval (CPI)

Data set size for GMTI much smaller than SAR, however time
constraints allow much less time for processing

Unlike SAR, entire data set may be stored in processor memories
No communication with global memory during processing, inter-
processor communication between subtasks (corner turns)

Previous work in [1] examined various partitionings of GMTI over
RIO-based systems

22 September 2005 7

Model Library Overview

Modeling library created using Mission Level
Designer (MLD), a commercial discrete-event simulation
modeling tool

C++-based, block-level, hierarchical modeling tool
Our RIO-SBR model library includes:

Compute node with RIO endpoint
IO and message passing RIO logical
layers
RIO parallel physical layer
Script-based processor model

RIO central-memory switch
Global memory (GM) board
External data source
See [1] for more details on model
library

Model of
Four-Processor Board

22 September 2005 8

RapidIO Testbed and Model Validation

2-node RapidIO testbed constructed
Xilinx Virtex-II Pro FPGAs
Xilinx RapidIO Core

250MHz link clock, 8-bit parallel
Block diagram of single endpoint
depicted in upper figure

Layer interface signals brought out
for logic analyzer visibility
Timing probes inserted into
simulation model in equivalent
positions, used to validate timing

Using same signals described
above, transaction may be viewed
across both endpoints
Equivalent system constructed in
MLD for validation

22 September 2005 9

Calibration Experiments

Calibration experiments
designed to match transaction
latencies

Single-packet experiments
measure internal endpoint
latencies

32B, 64B, 128B, and 256B
NREAD, NWRITE, NWRITE_R

Multi-packet experiments
calibrate realistic transaction
sizes, endpoint operation
overhead

1KB, 4KB, 16KB, 64KB, 256KB,
1MB, and 4MB transactions
NREAD, SWRITE, NWRITE_R

Figure depicts SWRITE trans.

22 September 2005 10

Validation Results: Latency
Single-packet latency results shown below for read and response-
less write transactions

Simulation models match hardware to less than 5% error in all cases
NWRITE_R not shown, but results are consistent with those shown

Maximum absolute difference between simulated and measured
time is less than 40ns

Difference has two components, model error (up to 32ns) and
measurement error (4-8ns)

NREAD Latency

0

500

1000

1500

2000

2500

3000

32 64 128 256
Packet Size (B)

La
te

nc
y

(n
s)

SIM
EXP

NWRITE Latency

0
500

1000
1500
2000
2500
3000

32 64 128 256

Packet Size (B)

La
te

nc
y

(n
s)

SIM
EXP

22 September 2005 11

Validation Results: Throughput
Throughput results calculated based on measured latencies and
amount of data transferred
Maximum actual throughput of 3.25Gbps for write transactions,
3.14Gbps for read transactions

4Gbps ideal throughput (250MHz DDR × 8 bits)
3.76Gbps ideal effective throughput, considering header/CRC overhead

Simulation models match hardware well (< 5% error) for small, medium,
and large transactions

SWRITE Throughput

0
0.5

1
1.5

2
2.5

3
3.5

256 1k 4k 16k 64k 256k 1M 4M

Transaction Size (B)

Th
ro

ug
hp

ut
 (G

bp
s)

SIM
EXP

NREAD Throughput

0
0.5

1
1.5

2
2.5

3
3.5

256 1k 4k 16k 64k 256k 1M 4M
Transaction Size (B)

Th
ro

ug
hp

ut
 (G

bp
s)

SIM
EXP

22 September 2005 12

Validation Results: Error Analysis
Single-packet latency error

Simulated packets of smaller-than-max size experience varying
levels of error, depending upon transaction type and size
All transaction types simulate most accurately for max-sized packets

Throughput error
Endpoints driven by user-space state machine, which contributes
overhead between packet transfers not currently modeled
Error in simulation levels out for larger transaction sizes

In all cases, simulation models match hardware to within 4%
Throughput Error

-4

-2

0

2

4

6

256 1k 4k 16k 64k 256k 1M 4M
Transaction Size (B)

Er
ro

r (
%

)

NREAD
NWRITE

Single-Packet Latency Error

-4
-2
0
2
4
6
8

10
12
14

32 64 128 256
Transaction Size (B)

Er
ro

r (
%

)

NREAD
NWRITE
NWRITE_R

22 September 2005 13

Simulation System Design Constraints
16-bit parallel 250MHz DDR RapidIO links (1 GB/s)
Systems composed of processor boards interconnected by RIO
backplane

4 processors per board, 8 Floating-Point Units (FPUs) per processor
Baseline SAR algorithm parameters:

Chunk-based algorithm performed out of global memory
16k ranges, 16k pulses, 16s CPI (~2GB)
Requires less processing power and network throughput, more
memory (global memory required)

Baseline GMTI algorithm parameters:
“Straightforward” partitioning used for lowest latency

Divides each data cube up across all processing elements
Data cube: 64k ranges, 256 pulses, 6 beams, 256ms CPI (~750 MB)
Requires more processing power and network throughput, less
memory (global memory not required)

22 September 2005 14

7-Board System

Backplane and System Models

System architecture mainly dictated by computational and
network requirements of GMTI and its small CPI (256 ms)

Requires ~3GB/s from source to sink to meet real-time deadlines

4-Switch Non-blocking Backplane

Backplane-to-Board 0, 1, 2, 3 Connections

Backplane-to-Board 4, 5, 6,
and Data Source/GM Connections

22 September 2005 15

Experiments: Overview

SAR experiments use four active processor boards
Remaining boards available for redundancy purposes, etc.
Chunk size varied for each system/algorithm configuration

Baseline GMTI partitioning uses seven active processor
boards

Explicit inter-processor communication for data redistribution
(rather than global memory)

Average CPI completion latency metric of choice to evaluate
each algorithm/configuration

SAR completion time must be less than CPI to allow algorithm to
be performed in real-time
Double-buffering allows “straightforward” GMTI completion
deadline to be relaxed to 2x CPI

22 September 2005 16

SAR: RIO Logical IO Optimization (1)

Chunk size per-processor = system-level
chunk size/number of processors in system

4 boards × 4 processors per board = 16
processors in system

No Synch: “free for all”
access to 4 GM ports
by 16 processors
Level 1: access to each
global memory (GM)
port controlled by read
token
Level 2: access to GM
controlled by write
token and read token
Level 3: access to GM
controlled by single
read + write token

SAR: Synchronization Effects

11

11.5

12

12.5

13

13.5

14

14.5

15

256KB 512KB 1MB 2MB 4MB 8MB 16MB
System-Level Chunk Size

A
ve

ra
ge

 L
at

en
cy

 (s
)

Synch Level 3
Synch Level 2
Synch Level 1
No Synch

22 September 2005 17

SAR: RIO Logical IO Optimization (2)

As a general rule, contention in network increases as chunk
sizes increase, causing slower CPI completion times

Model does not account for processing inefficiencies that may
result from using chunks that are “too small”
“Medium-sized” chunks likely provide good compromise

No synch case relies heavily on RIO flow control which bogs
down network as many processors contend for access to
global memory
Synch level 1 (read token) most simple and effective method
of synchronizing access to global memory

Define as baseline for Logical IO SAR
Synch level 3 adds too much synchronization, completely
removing contention but serializing all memory accesses in
the process

Trend of decreasing performance with increasing chunk size is
reversed in this case

22 September 2005 18

SAR: Double-Buffering

Double-buffered version of
SAR allows processors to
process “current” chunk
while reading “next” chunk

Requires 2x-3x more on-
board memory for buffering
each chunk
If system also going to
perform GMTI in a
“straightforward” fashion
(not out of GM), processors
will already have
significantly more than
enough memory for SAR
double-buffering

SAR: Double-Buffering

11

11.5

12

12.5

13

13.5

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB
System-Level Chunk Size

A
ve

ra
ge

 L
at

en
cy

 (s
) Double-Buffered

Logical IO Baseline

Significantly increases
performance for small chunk
sizes, but increases contention
at larger sizes

Synchronized version of 2x-
buffered alg. removes benefits

22 September 2005 19

SAR: RIO Clock Rate

Compares 125 MHz RIO system with 250 MHz baseline
Examine both systems with 4 GM ports and with 8 GM ports

Uses 4 processor boards and 2 GM boards ⇒ 2 backplane slots free

SAR: RapidIO DDR Clock Rate Variation

11

12

13

14

15

16

17

256KB 512KB 1MB 2MB 4MB 8MB 16MB

System-Level Chunk Size

A
ve

ra
ge

 L
at

en
cy

 (s
)

125 MHz 8 GM
125 MHz 4 GM
250 MHz 8 GM
250 MHz 4 GM Baseline

125 MHz systems
significantly slower but
still well inside 16 sec
deadline
Doubled number of GM
ports significantly
increases system
performance, especially
for 125 MHz system

Additional 4 GM ports
help to provide
processors with lots of
data for computation

22 September 2005 20

GMTI: Scalability

Purpose of experiment to stretch data cube sizes beyond
baseline and explore systems with 5, 6, and 7 active
processor boards

GMTI: System Scalability

150

250

350

450

550

650

750

32000 40000 48000 56000 64000 72000 80000
Number of Ranges

A
ve

ra
ge

 L
at

en
cy

 (m
s)

5-Board System

6-Board System

Baseline 7-Board System

Double-Buffered Deadline

7-board system scales
almost up to 80k ranges
with full double-buffering

“Double-buffering” implies
storage of “current” cube
while receiving “next” cube

All systems able to handle
64k ranges baseline cube
size

6-board system fails on 80k
ranges cube, 5-board
system fails on 72k and 80k
ranges cubes

22 September 2005 21

GMTI: Global Memory-based GMTI

Experiment examines GMTI performed out of global memory
in “chunks” similar to SAR

Performance much worse than baseline “straightforward” GMTI
due to redundant transfer of data to/from global memory for each
chunk

GMTI: Chunk-based Processing

100
150
200
250
300
350
400
450
500
550

256KB 512KB 1MB 2MB 4MB 8MB 16MB

System-Level Chunk Size
A

ve
ra

ge
 L

at
en

cy

(m
s)

Chunk-based GMTI 32k Ranges
Chunk-based GMTI 64k Ranges
Straightforward GMTI 32k Ranges
Straightforward GMTI 64k Ranges
Chunk-based Deadline
Straightforward Double-Buffered Deadline

Problems compounded by
inability to double-buffer entire
data cube when using chunks
(creates strict 256ms deadline)

Advantage is that individual
processing elements need
much less local memory

~1-2 chunks vs. entire 1/N of
data cube (N = # of processors)

22 September 2005 22

Conclusions (1)

Developed and validated suite of RapidIO models
Minimal error experienced in simulation vs. testbed results
Sources of small error being investigated with help from Xilinx
due to lack of visibility with internals of RapidIO core
Future work will integrate RIO switches into testbed

Used models to study performance of variations of GMTI and
SAR algorithms on RapidIO-based system

Results emphasize importance of carefully scheduling
communication rather than letting RapidIO network be solely
responsible for managing contention
Double-buffering of chunks provides mechanism for decreasing
SAR CPI completion latencies (or chunk-based GMTI latencies)
Double-buffering of entire data cube for “straightforward” GMTI
enables handling of larger cube sizes with fewer processing
resources

22 September 2005 23

Conclusions (2)

Several important considerations for building systems
capable of both GMTI and SAR

Wide disparity in CPI completion deadlines
SAR memory requirements much higher than GMTI
GMTI processing and network requirements higher than SAR

Systems capable of both GMTI and SAR must be built to
“greatest common denominator”

Can sometimes be wasteful of system resources when
performing one algorithm or the other
Compromise may be obtained by performing GMTI in a “chunk-
based” manner similar to SAR

Evens out usage of system resources at expense of GMTI CPI
completion latencies and data cube-size capabilities

22 September 2005 24

Bibliography

[1] D. Bueno, C. Conger, A. Leko, I. Troxel, and A. George, “Virtual Prototyping
and Performance Analysis of RapidIO-based System Architectures for
Space-Based Radar,” Proc. High-Performance Embedded Computing
(HPEC) Workshop, MIT Lincoln Lab, Lexington, MA, Sep. 28-30, 2004.

[2] C. Cho, “Performance Analysis for Synthetic Aperture Radar Target
Classification,” MSEE Thesis, Mass. Institute of Technology, Feb. 2001.

[3] P. Meisl, M. Ito, and I. Cumming, “Parallel Synthetic Aperture Radar
Processing on Workstation Networks,” Proc. 10th International Parallel
Processing Symposium, Apr. 15-29, 1996, pp. 716-723.

[4] S. Plimpton, G. Mastin, and D. Ghiglia, “Synthetic Aperture Radar Image
Processing on Parallel Supercomputers,” Proc. 1991 ACM/IEEE Conf. on
Supercomputing, Albuquerque, NM, 1991, pp. 446-452.

[5] D. Bueno, A. Leko, C. Conger, I. Troxel, and A. George, “Simulative Analysis
of the RapidIO Embedded Interconnect Architecture for Real-Time, Network-
Intensive Applications,” Proc. 29th IEEE Conf. on Local Computer Networks
(LCN) via IEEE Workshop on High-Speed Local Networks (HSLN), Tampa,
FL, Nov. 16-18, 2004.

[6] http://www.afa.org/magazine/aug2002/0802radar.asp
[7] G. Shippen, “RapidIO Technical Deep Dive 1: Architecture & Protocol,”

Motorola Smart Network Developers Forum, 2003.

22 September 2005 25

Acknowledgements

We wish to thank Honeywell Defense and Space Electronic
Systems (DSES) in Clearwater, FL for support of this
research.

We also extend thanks to Xilinx for their generous donation
of hardware and IP cores, as well as MLDesign Technologies
for their donation of simulation software.

