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Project Overview

Simulative analysis of real-time Space-Based Radar (SBR) 
systems using RapidIO interconnection networks

RapidIO is a high-performance, switched interconnect for 
embedded systems

Experimental validation of simulation models using a 
RapidIO hardware testbed

Image courtesy [6]

Sensitivity analysis of GMTI and SAR to RIO 
network and algorithm parameters

Uses discrete-event simulation of RapidIO 
network, processing elements, and SBR 
algorithms
Examine considerations for designing RIO-
based systems capable of both SAR and 
GMTI
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Background: RapidIO
Three-layered, embedded system interconnect architecture

Logical layer, transport layer, physical layer
Point-to-point, packet-switched interconnect
Peak single-link throughput ranging from 2 to 64 Gb/s
Focus on 16-bit parallel LVDS RIO design for space systems

Image courtesy [7]
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Background: SAR
SAR used to take broad-range, high-resolution snap-shots of 
surface features from satellites, even at night or inclement weather
Data set is 2D image or matrix, with range and pulse dimension

Typical data size is 2GB, each matrix element a 64-bit complex integer
Due to large data set size, image processed iteratively in chunks

Figure below illustrates each stage of algorithm 
Color denotes partitioning (see legend to right of picture)
Blue lines/blocks represent communication events

Processors write data back to global memory for repartitioning 
after processing completes in each subtask, if necessary
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Background: GMTI

GMTI used to track moving targets on ground
Incoming data organized as 3-D matrix (data cube)

Data reorganized between stages for processing efficiency
Real-time processing deadline for each cube defined as Coherent 
Processing Interval (CPI)

Data set size for GMTI much smaller than SAR, however time 
constraints allow much less time for processing

Unlike SAR, entire data set may be stored in processor memories
No communication with global memory during processing, inter-
processor communication between subtasks (corner turns)

Previous work in [1] examined various partitionings of GMTI over
RIO-based systems
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Model Library Overview

Modeling library created using Mission Level                    
Designer (MLD), a commercial discrete-event simulation 
modeling tool

C++-based, block-level, hierarchical modeling tool
Our RIO-SBR model library includes:

Compute node with RIO endpoint
IO and message passing RIO logical 
layers
RIO parallel physical layer
Script-based processor model

RIO central-memory switch
Global memory (GM) board
External data source
See [1] for more details on model 
library

Model of
Four-Processor Board
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RapidIO Testbed and Model Validation

2-node RapidIO testbed constructed
Xilinx Virtex-II Pro FPGAs
Xilinx RapidIO Core

250MHz link clock, 8-bit parallel
Block diagram of single endpoint 
depicted in upper figure

Layer interface signals brought out 
for logic analyzer visibility
Timing probes inserted into 
simulation model in equivalent 
positions, used to validate timing

Using same signals described 
above, transaction may be viewed 
across both endpoints
Equivalent system constructed in 
MLD for validation
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Calibration Experiments

Calibration experiments 
designed to match transaction 
latencies

Single-packet experiments 
measure internal endpoint 
latencies

32B, 64B, 128B, and 256B
NREAD, NWRITE, NWRITE_R

Multi-packet experiments 
calibrate realistic transaction 
sizes, endpoint operation 
overhead

1KB, 4KB, 16KB, 64KB, 256KB, 
1MB, and 4MB transactions
NREAD, SWRITE, NWRITE_R

Figure depicts SWRITE trans.
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Validation Results: Latency
Single-packet latency results shown below for read and response-
less write transactions

Simulation models match hardware to less than 5% error in all cases
NWRITE_R not shown, but results are consistent with those shown

Maximum absolute difference between simulated and measured 
time is less than 40ns

Difference has two components, model error (up to 32ns) and 
measurement error (4-8ns)
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Validation Results: Throughput
Throughput results calculated based on measured latencies and 
amount of data transferred
Maximum actual throughput of 3.25Gbps for write transactions, 
3.14Gbps for read transactions

4Gbps ideal throughput (250MHz DDR × 8 bits)
3.76Gbps ideal effective throughput, considering header/CRC overhead

Simulation models match hardware well (< 5% error) for small, medium, 
and large transactions
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Validation Results: Error Analysis
Single-packet latency error

Simulated packets of smaller-than-max size experience varying 
levels of error, depending upon transaction type and size
All transaction types simulate most accurately for max-sized packets

Throughput error
Endpoints driven by user-space state machine, which contributes 
overhead between packet transfers not currently modeled
Error in simulation levels out for larger transaction sizes

In all cases, simulation models match hardware to within 4%
Throughput Error
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Simulation System Design Constraints 
16-bit parallel 250MHz DDR RapidIO links (1 GB/s)
Systems composed of processor boards interconnected by RIO 
backplane

4 processors per board, 8 Floating-Point Units (FPUs) per processor
Baseline SAR algorithm parameters:

Chunk-based algorithm performed out of global memory
16k ranges, 16k pulses, 16s CPI (~2GB)
Requires less processing power and network throughput, more 
memory (global memory required)

Baseline GMTI algorithm parameters:
“Straightforward” partitioning used for lowest latency

Divides each data cube up across all processing elements
Data cube: 64k ranges, 256 pulses, 6 beams, 256ms CPI (~750 MB)
Requires more processing power and network throughput, less 
memory (global memory not required)
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7-Board System

Backplane and System Models

System architecture mainly dictated by computational and 
network requirements of GMTI and its small CPI (256 ms)

Requires ~3GB/s from source to sink to meet real-time deadlines

4-Switch Non-blocking Backplane

Backplane-to-Board 0, 1, 2, 3 Connections

Backplane-to-Board 4, 5, 6, 
and Data Source/GM Connections
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Experiments: Overview

SAR experiments use four active processor boards
Remaining boards available for redundancy purposes, etc.
Chunk size varied for each system/algorithm configuration

Baseline GMTI partitioning uses seven active processor 
boards

Explicit inter-processor communication for data redistribution 
(rather than global memory)

Average CPI completion latency metric of choice to evaluate 
each algorithm/configuration

SAR completion time must be less than CPI to allow algorithm to 
be performed in real-time
Double-buffering allows “straightforward” GMTI completion 
deadline to be relaxed to 2x CPI
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SAR: RIO Logical IO Optimization (1)

Chunk size per-processor = system-level 
chunk size/number of processors in system

4 boards × 4 processors per board = 16 
processors in system

No Synch: “free for all”
access to 4 GM ports 
by 16 processors
Level 1: access to each 
global memory (GM) 
port controlled by read 
token
Level 2: access to GM 
controlled by write 
token and read token
Level 3: access to GM 
controlled by single 
read + write token

SAR: Synchronization Effects 
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SAR: RIO Logical IO Optimization (2)

As a general rule, contention in network increases as chunk 
sizes increase, causing slower CPI completion times

Model does not account for processing inefficiencies that may 
result from using chunks that are “too small”
“Medium-sized” chunks likely provide good compromise

No synch case relies heavily on RIO flow control which bogs 
down network as many processors contend for access to 
global memory
Synch level 1 (read token) most simple and effective method 
of synchronizing access to global memory

Define as baseline for Logical IO SAR
Synch level 3 adds too much synchronization, completely 
removing contention but serializing all memory accesses in 
the process

Trend of decreasing performance with increasing chunk size is 
reversed in this case
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SAR: Double-Buffering

Double-buffered version of 
SAR allows processors to 
process “current” chunk 
while reading “next” chunk

Requires 2x-3x more on-
board memory for buffering 
each chunk
If system also going to 
perform GMTI in a 
“straightforward” fashion 
(not out of GM), processors 
will already have 
significantly more than 
enough memory for SAR 
double-buffering

SAR: Double-Buffering
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SAR: RIO Clock Rate

Compares 125 MHz RIO system with 250 MHz baseline
Examine both systems with 4 GM ports and with 8 GM ports

Uses 4 processor boards and 2 GM boards ⇒ 2 backplane slots free

SAR: RapidIO DDR Clock Rate Variation
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GMTI: Scalability

Purpose of experiment to stretch data cube sizes beyond 
baseline and explore systems with 5, 6, and 7 active 
processor boards

GMTI: System Scalability
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almost up to 80k ranges 
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64k ranges baseline cube 
size

6-board system fails on 80k 
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GMTI: Global Memory-based GMTI

Experiment examines GMTI performed out of global memory 
in “chunks” similar to SAR

Performance much worse than baseline “straightforward” GMTI 
due to redundant transfer of data to/from global memory for each
chunk

GMTI: Chunk-based Processing
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Problems compounded by 
inability to double-buffer entire 
data cube when using chunks 
(creates strict 256ms deadline)

Advantage is that individual 
processing elements need 
much less local memory

~1-2 chunks vs. entire 1/N of 
data cube (N = # of processors)
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Conclusions (1)

Developed and validated suite of RapidIO models
Minimal error experienced in simulation vs. testbed results
Sources of small error being investigated with help from Xilinx 
due to lack of visibility with internals of RapidIO core
Future work will integrate RIO switches into testbed

Used models to study performance of variations of GMTI and 
SAR algorithms on RapidIO-based system

Results emphasize importance of carefully scheduling 
communication rather than letting RapidIO network be solely 
responsible for managing contention
Double-buffering of chunks provides mechanism for decreasing 
SAR CPI completion latencies (or chunk-based GMTI latencies)
Double-buffering of entire data cube for “straightforward” GMTI 
enables handling of larger cube sizes with fewer processing 
resources
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Conclusions (2)

Several important considerations for building systems 
capable of both GMTI and SAR

Wide disparity in CPI completion deadlines
SAR memory requirements much higher than GMTI
GMTI processing and network requirements higher than SAR

Systems capable of both GMTI and SAR must be built to 
“greatest common denominator”

Can sometimes be wasteful of system resources when 
performing one algorithm or the other
Compromise may be obtained by performing GMTI in a “chunk-
based” manner similar to SAR

Evens out usage of system resources at expense of GMTI CPI 
completion latencies and data cube-size capabilities
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