
High Performance Computing from a General Formalism: Conformal

Computing Techniques∗ Illustrated with a Quantum Computing Example

L. R. Mullin, Department of Computer Science
J. E. Raynolds, College of Nanoscale Science and Engineering

University at Albany, State University of New York, Albany, NY 12203

R. M. Mattheyses, GE Global Research, Niskayuna, NY, 12309

May 5, 2005

Abstract

As the theme of this conference suggests, developments in computer hardware have drastically out-
paced developments in software. Software still suffers from a lack of standardization across architectures
and processor/memory hierarchies. For example, despite the existence of language standards (i.e. ANSI)
there are still no standards for compilers. The same source code produces different executable code even
on the same hardware using different compilers. The formalism we use is based on a rigorous mathe-
matical theory based on an algebra of abstract data structures (A Mathematics of Arrays) and an array
indexing calculus (the psi-calculus). One of the most important aspects of this approach is the ability to
compose a sequence of algebraic manipulations in terms of array shapes and abstract indexing. The net
result is the elimination of temporary arrays, which leads to significant performance improvements. An-
other important point of this approach is that the mathematics used to describe the problem is the same
as that used to describe the details of the hardware. Thus at the end of a derivation the resulting final
expression can simply be translated into portable, efficient code in any programming language. Another
important attribute of the Conformal Computing approach is the ability to mathematically prove that
the resulting implementation is maximally efficient given a set of metrics (e.g. speeds of memory levels,
processors, networks, etc). We choose to illustrate these techniques using a problem from Quantum
Computing in which realistic simulations require enormous problem sizes. We present an algorithm that
allows one to do a number of generalized matrix operations in a single step thus eliminating the need
for large temporary arrays.

1 Quantum Computing: motivation for a matrix problem with arbi-
trary array access patterns

We now give a brief overview of the motivation for the present problem. The dream of Quantum Computing
is the realization of a quantum computer in which data is represented by the states of a physical system such
as the spin of an electron or proton. The physical picture one should imagine (to the extent that quantum
processes can be imagined) is that of a spin or collection of spins interacting with electromagnetic fields.
One possible embodyment of a quantum computer would be to utilize an apparatus closely resembling
that used in Magnetic Resonance Imagining (MRI). Individual spins are manipulated through application
of pulses of electric and magnetic fields.
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The primary interest in Quantum Computing is the promise of greatly increased computing capability
due to the inherently parallel nature of data storage and computation resulting from the superposition
principle of quantum mechanics. For example, it has been theoretically proven that certain algorithms
requiring exponential time on a classical computer can be solved in polynomial time on a quantum com-
puter. We shall say no more about Quantum Computing in this paper and we turn to now the specific
matrix problem to be solved.

2 The density matrix

Linear Algebra is the natural context in which to describe operations in a quantum computer and the
central quantity is the density matrix. The density matrix contains time dependent information about the
time evolution of the system. As such, when we want to describe the action of a particular field on a state
of the system (e.g. flipping a spin with an RF electromagnetic pulse as in an MRI experiment), we write it
as a matrix operation in which the density matrix acts on a vector. The vector in this case represents the
state of the system before the application of the field. The structure of the matrix depends on the type of
operation in question. In general, for any given operation, we require only a sparse collection of elements
from the density matrix. The specific arrangement of the required elements in the matrix depends on
which spin or collection of spins are being manipulated.

We focus on the following problem. Given the density matrix, for an arbitrary quantum operation on
an arbitrary number of states (qubits) we wish (for computational convenience) to rearrange the data so as
to place the required elements on the diagonal in block-diagonal form. Using the techniques of Conformal
Computing we have found a way to do this in one step. Consider the following possible arrangements for
a 16× 16 density matrix for which we wish to manipulate two spins (qubits).
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We wish to rearrange a pattern such as the one on the right into a block-diagonal form such as that
on the left. The transformation is effected by viewing the 2n × 2n density matrix as a 22n dimensional
hypercube and carrying out a certain rearrangement of the indices of the hypercube.

For a 2n × 2n density matrix D, we say that the shape of the array (a vector giving the lengths of its
dimensions) is ρD =< 2n 2n >. Now we reshape the array into a hypercube Dh. Now the shape of the
hypercube is a vector of 2n 2’s, that is, <2 2 · · · 2>.

The rearrangement we seek is a certain permutation of the indices of the hypercube. We write the
block-diagonal matrix Db as Db = ~t©\ Dh, where the vector ~t is a permutation vector and the operator ©\
corresponds to transposing the indices of the hypercube as specified by the permutation vector. For the
specific example above, we have ~t =<0 2 1 3 4 6 5 7>

We wave worked out an algorithm for determining the general permutation vector but space constraints
prohibit us from presenting it here. Full details will be given during the presentation at hpec05.
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