
A Streaming Virtual Machine for GPUs
Kenneth Mackenzie†, Daniel P. Campbell‡ and Peter Szilagyi†

kenmac@reservoir.com, dan.campbell@gtri.com, szilagyi@reservoir.com
†Reservoir Labs, Inc, New York, NY

‡Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA

Abstract1

We describe a work in progress to develop a prototype
toolchain for compiling HPC applications to Graphic
Processing Units (GPUs). The toolchain is based on the
DARPA Polymorphous Computing Architecture (PCA)
program's Streaming Virtual Machine (SVM) interface
[2][4] and uses Reservoir's R-Stream compiler [5] to
produce SVM code.

The elements of the prototype, then, are a machine model
input to R-Stream, an adapter from SVM code to nVidia’s
Cg compiler [7] and a runtime system.

Results to date are that the SVM interface appears apt for
controlling GPUs with low overhead but that SVM’s C-
based description of kernels, while sufficient, would benefit
from extensions to ease the analysis required for translation
to Cg. We have not tackled the (deep) problem of feedback
from Cg into R-Stream but expect to gain insight into the
issue through experiments with the prototype.

Why GPUs Need Compilers
The same architectural techniques that give GPUs high
performance make them a difficult, moving target to
program.

First, GPU programmers must co-optimize across multiple
constraints imposed by the architecture. GPUs, like media
processors, network processors and a number of current
research architectures demonstrate that it is possible to
approach the performance of fixed-function hardware with
a programmable chip, as long as the application's mapping
to the hardware is efficient. However, the essential
characteristics of the hardware that provide high
performance -- high degrees of parallelism, small bounded
local memories, need for explicit communications
management -- introduce severe restrictions into the
programming model. From an architecture perspective,
these techniques allow more of the chip to be devoted to
computation than in a conventional CPU. From a
compilation or programmer’s perspective, these features
introduce dependencies between optimization phases that
are separate in a conventional compiler or programmer
workflow.

Second, the constraints change with time. Part of the
technique GPU vendors use to maintain their impressively
steep technology curve is to substantially alter hardware
parameters (degree and type of parallelism, local memory
sizes, feature sets) from generation to generation. The

consequence is that an application carefully optimized to a
particular generation of GPU is suboptimal for subsequent
generations. Rapid evolution compounds the programming
difficulty by making the architectures a moving target.

Streaming Virtual Machine
The PCA SVM interface models a class of architectures
typified by high-performance accelerators attached to
explicitly-managed local memories as in Figure 1.

Figure 1: SVM machine model: host augmented with one or
more stream processors, each operating from an explicitly-

managed local memory.

The interface provides a control model for describing
kernels that execute in the stream processor on blocks or
streams of data placed in local memory. SVM uses C to
describe the control code on the host and the kernels on the
stream processor plus API calls for managing the local
memories and the kernels. The intent is that SVM is
generated automatically by an autopartitioning compiler
(e.g. Reservoir’s R-Stream) or some other tool.

Toolchain for GPUs
Current GPUs embody an implementation of a 3D graphics
pipeline with embedded multiprocessors for several of the
stages. General purpose computing on graphics processors
uses these embedded multiprocessors for non-graphics
purposes. Because of the special-purpose nature of the
pipeline, these embedded multiprocessors are only partially
accessible for such non-graphics purposes and come with a
number of programming restrictions.

Specifically for our work, we model the fragment shader as
a stream processor and the video RAM as a local memory.
The fragment shader appears near the end of the graphics
pipeline and applies a function to every fragment (potential
pixel) in a polygon. The function may reference textures as
inputs but can only write one output to its current
coordinate. For general-purpose work, the textures are input
arrays, the polygon is an iteration space (generally a
rectangle) and the fragments are one output array.

The toolchain, then, must select kernels that fit the
capabilities of the fragment shader, map kernels to GPU(s),

host with
global
memory
(may be a
multi-
processor
or
distributed)

local
memory stream

processor

one or more stream processors

compile them to executable form and manage their
execution and memory usage at runtime.

Figure 2: Toolchain work flow. The High-Level Compiler

selects, maps and schedules kernels, emitting code for both the
host processor and the GPU(s) in SVM format. This project is

developing the grayed items: the machine model, the Low-
Level Compiler and the runtime.

The toolchain consists of three components (Figure 2):

1. A high-level compiler (or programmer framework) that
identifies, maps and schedules kernels. In the case of
R-Stream, the input is an annotated C program along
with a machine model describing the architecture in
abstract terms (processors, memories, interconnect) and
the output is an SVM file with separate kernels, DMA
invocations and control code.

2. The low-level compiler is target specific. Our
prototype low-level compiler for GPUs translates SVM
kernels into fragment shader programs and translates
kernel invocations to match.

3. The runtime system is also target specific. Our
prototype runtime interprets SVM operations to
manage GPU texture memory and to invoke fragment
shader programs.

Progress and Results
The three goals of this exercise are to determine feasibility,
to evaluate performance and to provide a platform for
experimenting with feedback from the low-level compiler
to the high-level compiler.

First, we hypothesize that SVM contains sufficient
information to convert the SVM kernels and invocations
into Cg programs and invocations. The crux here is moving
the explicit loops out of the kernel into the implicit loops
over polygons of Cg's invocation mechanism. Our
conclusion is that there is enough information but it is not
extractable in general without dataflow analysis and pointer
disambiguation. We find ourselves relying on R-Stream
idioms. We expect we will have to annotate SVM kernels in
some way to ease this problem.

Second, we predict that SVM's kernel description and
invocation mechanism mechanisms will add negligible
overhead to a purpose-built interface such as Brook [1] or
PUG [3]. At the time of writing we have no measurements

to substantiate this claim but we have encountered no
obvious overheads in implementation.

Third, we expect to gain insight into feedback required
from Cg to R-Stream. This is a deep issue exacerbated by
the two-level compiler approach. The issue is that GPUs
(and stream processors in general) come with exotic
constraints and performance models. An HLC has to do its
job of selecting and scheduling kernels using a necessarily
abstract model of the hardware. The constraints can be part
of the abstract model ("feed-forward") or the HLC can
make test calls to the LLC and receive results ("feedback")
as part of a search. The two-level compiler approach makes
this problem abject because this feedback information must
be exposed as part of the interface between the compilers,
but even a monolithic tool would have this problem.

Related Work
There are at least three other interfaces to GPUs useful for
general-purpose computation.

Brook-GPU [1] combines a streaming language (Brook)
with a GPU runtime. The Brook language provides explicit
kernels connected by streams as extensions to C. Brook-
GPU manages the kernels and memory on the GPU. In our
toolchain, R-Stream selects the kernels from loops in the
annotated C source. The SVM interface is similar to but
more primitive than Brook in that SVM kernels are
explicitly scheduled. SVM also supports multiple stream
processors.

PUG [3] provides a minimal interface to map arrays and
iteration spaces to fragment shaders in Cg and to bind
fragment program formal parameters to invocation
arguments.

Sh [6] is embeds shader programs as sequences of API calls
in a C++ program which gives the two domains the same
namespace.

References
[1] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon

Fatahalian, Mike Houston and Pat Hanrahan, “Brook for
GPUs: Stream Computing on Graphics Hardware,”
Proceedings of SIGGRAPH 2004, 2004.

[2] Daniel P. Campbell, Dennis M. Cottel, Randall R. Judd and
Mark A. Richards, "Introduction to Morphware",
http://www.morphware.org/PCA101/

[3] Mark Harris, “Mapping Computational Concepts to GPUs”,
chapter 31 in GPU Gems 2, Addison-Wesley, 2005.

[4] Francois Labonte, Peter Mattson, Ian Buck, Christos
Kozyrakis and Mark Horowitz, “The Stream Virtual
Machine,” in International Conference and Parallel
Architectures and Compilation Techniques, 2004.

[5] Richard Lethin, “R-Stream 3.0: Technologies for High Level
Embedded Application Mapping,” HPEC, 2004.

[6] Michael D. McCool, Zheng Qin and Tiberiu S. Popa, “Shader
Metaprogramming,” in Graphics Hardware, 2002.

[7] nVidia Corporation, “Cg Toolkit User’s Manual”, Release 1.1,
February, 2003.

High-Level Compiler (HLC)
e.g. R-Stream

Low-Level Compiler (LLC)
translator to C + Cg

Runtime
library atop OpenGL/DirectX

program.c machine_model.xml

program.svm.c

feedback
(TBD)

