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Abstract1

We describe a work in progress to develop a prototype 
toolchain for compiling HPC applications to Graphic 
Processing Units (GPUs).  The toolchain is based on the 
DARPA Polymorphous Computing Architecture (PCA) 
program's Streaming Virtual Machine (SVM) interface 
[2][4] and uses Reservoir's R-Stream compiler [5] to 
produce SVM code. 

The elements of the prototype, then, are a machine model 
input to R-Stream, an adapter from SVM code to nVidia’s 
Cg compiler [7] and a runtime system. 

 

Results to date are that the SVM interface appears apt for 
controlling GPUs with low overhead but that SVM’s C-
based description of kernels, while sufficient, would benefit 
from extensions to ease the analysis required for translation 
to Cg.  We have not tackled the (deep) problem of feedback 
from Cg into R-Stream but expect to gain insight into the 
issue through experiments with the prototype. 

Why GPUs Need Compilers 
The same architectural techniques that give GPUs high 
performance make them a difficult, moving target to 
program. 

First, GPU programmers must co-optimize across multiple 
constraints imposed by the architecture. GPUs, like media 
processors, network processors and a number of current 
research architectures demonstrate that it is possible to 
approach the performance of fixed-function hardware with 
a programmable chip, as long as the application's mapping 
to the hardware is efficient.  However, the essential 
characteristics of the hardware that provide high 
performance -- high degrees of parallelism, small bounded 
local memories, need for explicit communications 
management -- introduce severe restrictions into the 
programming model. From an architecture perspective, 
these techniques allow more of the chip to be devoted to 
computation than in a conventional CPU. From a 
compilation or programmer’s perspective, these features 
introduce dependencies between optimization phases that 
are separate in a conventional compiler or programmer 
workflow. 

Second, the constraints change with time. Part of the 
technique GPU vendors use to maintain their impressively 
steep technology curve is to substantially alter hardware 
parameters (degree and type of parallelism, local memory 
sizes, feature sets) from generation to generation. The 
                                                 
 

consequence is that an application carefully optimized to a 
particular generation of GPU is suboptimal for subsequent 
generations. Rapid evolution compounds the programming 
difficulty by making the architectures a moving target. 

Streaming Virtual Machine 
The PCA SVM interface models a class of architectures 
typified by high-performance accelerators attached to 
explicitly-managed local memories as in Figure 1. 

 
Figure 1: SVM machine model: host augmented with one or 
more stream processors, each operating from an explicitly-

managed local memory. 

The interface provides a control model for describing 
kernels that execute in the stream processor on blocks or 
streams of data placed in local memory. SVM uses C to 
describe the control code on the host and the kernels on the 
stream processor plus API calls for managing the local 
memories and the kernels. The intent is that SVM is 
generated automatically by an autopartitioning compiler 
(e.g. Reservoir’s R-Stream) or some other tool. 

Toolchain for GPUs 
Current GPUs embody an implementation of a 3D graphics 
pipeline with embedded multiprocessors for several of the 
stages. General purpose computing on graphics processors 
uses these embedded multiprocessors for non-graphics 
purposes. Because of the special-purpose nature of the 
pipeline, these embedded multiprocessors are only partially 
accessible for such non-graphics purposes and come with a 
number of programming restrictions. 

Specifically for our work, we model the fragment shader as 
a stream processor and the video RAM as a local memory. 
The fragment shader appears near the end of the graphics 
pipeline and applies a function to every fragment (potential 
pixel) in a polygon. The function may reference textures as 
inputs but can only write one output to its current 
coordinate. For general-purpose work, the textures are input 
arrays, the polygon is an iteration space (generally a 
rectangle) and the fragments are one output array. 

The toolchain, then, must select kernels that fit the 
capabilities of the fragment shader, map kernels to GPU(s), 
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compile them to executable form and manage their 
execution and memory usage at runtime. 

 

 
Figure 2: Toolchain work flow. The High-Level Compiler 

selects, maps and schedules kernels, emitting code for both the 
host processor and the GPU(s) in SVM format. This project is 

developing the grayed items: the machine model, the Low-
Level Compiler and the runtime. 

The toolchain consists of three components (Figure 2): 

1. A high-level compiler (or programmer framework) that 
identifies, maps and schedules kernels. In the case of 
R-Stream, the input is an annotated C program along 
with a machine model describing the architecture in 
abstract terms (processors, memories, interconnect) and 
the output is an SVM file with separate kernels, DMA 
invocations and control code. 

2. The low-level compiler is target specific. Our 
prototype low-level compiler for GPUs translates SVM 
kernels into fragment shader programs and translates 
kernel invocations to match. 

3. The runtime system is also target specific. Our 
prototype runtime interprets SVM operations to 
manage GPU texture memory and to invoke fragment 
shader programs. 

Progress and Results 
The three goals of this exercise are to determine feasibility, 
to evaluate performance and to provide a platform for 
experimenting with feedback from the low-level compiler 
to the high-level compiler. 

First, we hypothesize that SVM contains sufficient 
information to convert the SVM kernels and invocations 
into Cg programs and invocations. The crux here is moving 
the explicit loops out of the kernel into the implicit loops 
over polygons of Cg's invocation mechanism.  Our 
conclusion is that there is enough information but it is not 
extractable in general without dataflow analysis and pointer 
disambiguation.  We find ourselves relying on R-Stream 
idioms. We expect we will have to annotate SVM kernels in 
some way to ease this problem. 

Second, we predict that SVM's kernel description and 
invocation mechanism mechanisms will add negligible 
overhead to a purpose-built interface such as Brook [1] or 
PUG [3].  At the time of writing we have no measurements 

to substantiate this claim but we have encountered no 
obvious overheads in implementation. 

Third, we expect to gain insight into feedback required 
from Cg to R-Stream.  This is a deep issue exacerbated by 
the two-level compiler approach. The issue is that GPUs 
(and stream processors in general) come with exotic 
constraints and performance models.  An HLC has to do its 
job of selecting and scheduling kernels using a necessarily 
abstract model of the hardware.  The constraints can be part 
of the abstract model ("feed-forward") or the HLC can 
make test calls to the LLC and receive results ("feedback") 
as part of a search. The two-level compiler approach makes 
this problem abject because this feedback information must 
be exposed as part of the interface between the compilers, 
but even a monolithic tool would have this problem. 

Related Work 
There are at least three other interfaces to GPUs useful for 
general-purpose computation. 

Brook-GPU [1] combines a streaming language (Brook) 
with a GPU runtime. The Brook language provides explicit 
kernels connected by streams as extensions to C. Brook-
GPU manages the kernels and memory on the GPU. In our 
toolchain, R-Stream selects the kernels from loops in the 
annotated C source. The SVM interface is similar to but 
more primitive than Brook in that SVM kernels are 
explicitly scheduled. SVM also supports multiple stream 
processors. 

PUG [3] provides a minimal interface to map arrays and 
iteration spaces to fragment shaders in Cg and to bind 
fragment program formal parameters to invocation 
arguments. 

Sh [6] is embeds shader programs as sequences of API calls 
in a C++ program which gives the two domains the same 
namespace. 

References 
[1] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon 

Fatahalian, Mike Houston and Pat Hanrahan, “Brook for 
GPUs: Stream Computing on Graphics Hardware,” 
Proceedings of SIGGRAPH 2004, 2004. 

[2] Daniel P. Campbell, Dennis M. Cottel, Randall R. Judd and 
Mark A. Richards, "Introduction to Morphware", 
http://www.morphware.org/PCA101/ 

[3] Mark Harris, “Mapping Computational Concepts to GPUs”, 
chapter 31 in GPU Gems 2, Addison-Wesley, 2005. 

[4] Francois Labonte, Peter Mattson, Ian Buck, Christos 
Kozyrakis and Mark Horowitz, “The Stream Virtual 
Machine,” in International Conference and Parallel 
Architectures and Compilation Techniques, 2004. 

[5] Richard Lethin, “R-Stream 3.0: Technologies for High Level 
Embedded Application Mapping,” HPEC, 2004. 

[6] Michael D. McCool, Zheng Qin and Tiberiu S. Popa, “Shader 
Metaprogramming,” in Graphics Hardware, 2002. 

[7] nVidia Corporation, “Cg Toolkit User’s Manual”, Release 1.1, 
February, 2003. 

High-Level Compiler (HLC) 
e.g. R-Stream 

Low-Level Compiler (LLC) 
translator to C + Cg 

Runtime 
library atop OpenGL/DirectX 

program.c machine_model.xml

program.svm.c 

feedback 
(TBD) 




