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Introduction1

Many embedded data processing applications can be 
characterized by their pipelined structure.  The output from 
one stage of the computation is forwarded to the input of a 
successor computational stage.  Examples include signal 
processing, biosequence search, encryption, and others.  
The input data might originate from signal acquisition 
subsystems or large, disk-based data stores [1,2]. 

For performance reasons, it is often desirable to deploy 
these pipelined applications on physically pipelined 
computing infrastructures.  In addition, the computing 
resources themselves can have a hybrid structure, with a 
combination of general-purpose processors and 
reconfigurable logic (e.g., FPGAs) available. 

Given the availability of a hybrid computing infrastructure 
to enable the execution of a pipelined application, we now 
must consider what the available and appropriate 
deployment options are.  Mapping the application to the 
computational resources and choosing the “best” resource 
for each computational pipeline stage are decisions that 
must be guided by good performance estimates of 
significant metrics (e.g., throughput, latency). 

Exploring the Design Space 
Figure 1 illustrates the type of design questions that we 
address.  Across the top of the figure is an application that 
consists of three pipelined computational stages (1  3).  
Across the bottom of the figure is a pair of computing 
resources (compute platforms 1 and 2).  The figure 
illustrates application stage 1 being mapped to compute 
platform 1, application stage 3 being mapped to compute 
platform 2, and a question as to whether application stage 2 
should be mapped to compute platform 1 or 2. 
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Figure 1: Mapping application to architecture 
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While the figure illustrates a particular design question, a 
full design problem has many such questions.  For example, 
what technology should be used for compute platform 1 
(e.g., processor or reconfigurable logic)?  How does this 
choice impact the mapping question for application stage 2? 

Development Environment 
We are designing a development environment for pipelined 
applications that supports a number of hybrid computing 
platforms.  Our target platforms include traditional general-
purpose processors (e.g., x86, PowerPC, ARM), chip 
multiprocessors (e.g., Intel IXP network processor, AMD 
multi-core Opteron), and reconfigurable logic (e.g., 
FPGAs). 

Application development for a hybrid compute platform 
starts with an executable specification developed in C/C++ 
that indicates the algorithm for each application stage and 
the movement of information between stages.  Algorithms 
for particular application stages are developed using 
traditional MPI-style send() and rcve() calls to deliver 
data between stages of the pipeline.  This executable 
specification is, in fact, directly deployable on a traditional 
parallel processor. It also serves as the reference system 
(i.e., the “golden model”) for algorithmic verification and 
validation efforts on the subsequent candidate designs. 

For an application pipeline stage that is to be deployed 
within an FPGA, it is necessary to develop the individual 
stage’s algorithm using a language appropriate for the 
platform (e.g., VHDL, Verilog, or SystemC).   With some 
chip multiprocessor platforms, specialized algorithm 
development is also likely to be required.  In all cases, 
however, data into and out of the stage is handled via a 
common interface specification [2]. 

By having the data communications in and out of each stage 
conform to a standard interface specification, the 
infrastructure provided as part of the development 
environment can: 

(1) connect the application pipeline stages together, 
independent of which computing platform each stage 
runs on; 

(2) deliver data output from one stage to the appropriate 
downstream stage; and 

(3) empirically measure the performance of individual 
pipeline stages as well as the application as a whole. 

In addition, the infrastructure enables one to build a library 
of algorithms that can be readily reused. 



Emphasis on Performance Evaluation 
Given that performance is the primary motivating factor 
when using hybrid computational platforms, the lack of 
consideration given to evaluating performance in the vast 
majority of application development environments is 
appalling. We take the position that performance 
evaluation, either of a constructed system on which 
empirical measurements can be taken or of a candidate 
system on which performance estimates must be used, is a 
primary design consideration, second only to correctness, 
that should be richly supported in the development 
environment. 

In our system, performance evaluation is being supported at 
a number of levels.  Analytic models have been developed 
that not only predict which stage(s) is(are) a performance 
bottleneck, but also provide quantitative assessment of 
stage-to-stage queuing requirements (an often ignored 
resource that can be critical to overall performance). 

Provided simulation models are of two forms.  One is a 
traditional discrete-event simulation toolset that has been 
designed to simplify the model development process for the 
pipelined applications of interest.  The second is a co-
simulation infrastructure that enables developers to 
concurrently execute the general-purpose processor 
deployed pipeline stages and simulate (at the RTL level) the 
reconfigurable hardware deployed pipeline stages. 

 

Finally, the development infrastructure’s ability to 
automatically integrate and deploy application pipelines 
onto actual hardware platforms dramatically eases the effort 
required to widen the scope of the design space explored 
via direct execution and empirical evaluation. 

Initial Applications 
We are testing our application development environment as 
it is being built using a set of real-world pipelined 
applications.  These applications have been chosen to be 
representative of the general class of pipelined applications 
of interest and have intentionally been selected from a 
diverse group of user communities. 

Our first application consists of signal processing tasks 
associated with the VERITAS gamma-ray telescope.  This 
NSF/DOE funded project consists of an array of 12 m 
atmospheric Cherenkov telescopes for gamma-ray 
astronomy at 50 GeV to 50 TeV energies [3].  The data set 
consists of images of Cherenkov light flashes from gamma-
ray initiated electromagnetic showers. 

The algorithmic requirements for this application include a 
signal processing pipeline that is quite common to many 
other applications.  Our initial pipeline stages include an 
FFT, a low-pass filter, a matched filter, all followed by an 
IFFT.  These computations are applied to the time series 
signal from each image pixel.  Following this, the resulting 
individual pixel signals are aggregated and pattern detection 
is performed searching for signature images. 

The second application in the set is 3DES encryption.  The 
3DES application is a pipeline that consists of 3 copies of 

the Data Encryption Standard (DES) kernel [4].  In addition 
to the macro-level pipelining just described, the kernel itself 
consists of a series of computation stages that can be 
pipelined. 

The third application in the set is the HMMER program for 
protein sequence analysis using profile hidden Markov 
models.  Here, the primary computation is in the form of a 
dynamic programming problem [5]. 

The final application is also from the field of 
biocomputation.  BLAST, the Basic Local Alignment 
Search Tool [6], is the most widely used software for 
rapidly comparing a query sequence to a biosequence 
database.  As shown in Figure 2, BLAST is functionally 
organized as a pipeline with three stages: word matching, 
ungapped extension, and gapped extension. The inputs to 
this pipeline are a query sequence and a sequence database.  
Each stage of BLAST’s pipeline implements progressively 
more sophisticated and more expensive computations to 
identify biologically meaningful similarities between query 
and database. 

 
Figure 2: The BLAST application pipeline 

Conclusions 
We describe an application development environment for 
pipelined hybrid systems with an emphasis on making 
performance evaluation a primary design consideration.  
The development environment supports a number of 
computational platforms, including general-purpose 
processors, chip multiprocessors, and reconfigurable logic.  
The development environment is being tested using a set of 
real-world, production applications. 
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