
Application Development for Hybrid Pipelined Systems
Mark A. Franklin*, Patrick Crowley*, Roger D. Chamberlain*, Jeremy Buhler*, and James H. Buckley†

*Department of Computer Science and Engineering
†Department of Physics

Washington University in St. Louis
jbf@wustl.edu, pcrowley@wustl.edu, roger@wustl.edu, jbuhler@wustl.edu, buckley@wustl.edu

Introduction1

Many embedded data processing applications can be
characterized by their pipelined structure. The output from
one stage of the computation is forwarded to the input of a
successor computational stage. Examples include signal
processing, biosequence search, encryption, and others.
The input data might originate from signal acquisition
subsystems or large, disk-based data stores [1,2].

For performance reasons, it is often desirable to deploy
these pipelined applications on physically pipelined
computing infrastructures. In addition, the computing
resources themselves can have a hybrid structure, with a
combination of general-purpose processors and
reconfigurable logic (e.g., FPGAs) available.

Given the availability of a hybrid computing infrastructure
to enable the execution of a pipelined application, we now
must consider what the available and appropriate
deployment options are. Mapping the application to the
computational resources and choosing the “best” resource
for each computational pipeline stage are decisions that
must be guided by good performance estimates of
significant metrics (e.g., throughput, latency).

Exploring the Design Space
Figure 1 illustrates the type of design questions that we
address. Across the top of the figure is an application that
consists of three pipelined computational stages (1 3).
Across the bottom of the figure is a pair of computing
resources (compute platforms 1 and 2). The figure
illustrates application stage 1 being mapped to compute
platform 1, application stage 3 being mapped to compute
platform 2, and a question as to whether application stage 2
should be mapped to compute platform 1 or 2.

application
stage 1

application
stage 2

application
stage 3

compute
platform 1

compute
platform 2

?

Figure 1: Mapping application to architecture

This work supported by NSF grants CCF-0427794 and DBI–0237902 and
NIH/NGHRI grant 1 R42 HG003225–01.

While the figure illustrates a particular design question, a
full design problem has many such questions. For example,
what technology should be used for compute platform 1
(e.g., processor or reconfigurable logic)? How does this
choice impact the mapping question for application stage 2?

Development Environment
We are designing a development environment for pipelined
applications that supports a number of hybrid computing
platforms. Our target platforms include traditional general-
purpose processors (e.g., x86, PowerPC, ARM), chip
multiprocessors (e.g., Intel IXP network processor, AMD
multi-core Opteron), and reconfigurable logic (e.g.,
FPGAs).

Application development for a hybrid compute platform
starts with an executable specification developed in C/C++
that indicates the algorithm for each application stage and
the movement of information between stages. Algorithms
for particular application stages are developed using
traditional MPI-style send() and rcve() calls to deliver
data between stages of the pipeline. This executable
specification is, in fact, directly deployable on a traditional
parallel processor. It also serves as the reference system
(i.e., the “golden model”) for algorithmic verification and
validation efforts on the subsequent candidate designs.

For an application pipeline stage that is to be deployed
within an FPGA, it is necessary to develop the individual
stage’s algorithm using a language appropriate for the
platform (e.g., VHDL, Verilog, or SystemC). With some
chip multiprocessor platforms, specialized algorithm
development is also likely to be required. In all cases,
however, data into and out of the stage is handled via a
common interface specification [2].

By having the data communications in and out of each stage
conform to a standard interface specification, the
infrastructure provided as part of the development
environment can:

(1) connect the application pipeline stages together,
independent of which computing platform each stage
runs on;

(2) deliver data output from one stage to the appropriate
downstream stage; and

(3) empirically measure the performance of individual
pipeline stages as well as the application as a whole.

In addition, the infrastructure enables one to build a library
of algorithms that can be readily reused.

Emphasis on Performance Evaluation
Given that performance is the primary motivating factor
when using hybrid computational platforms, the lack of
consideration given to evaluating performance in the vast
majority of application development environments is
appalling. We take the position that performance
evaluation, either of a constructed system on which
empirical measurements can be taken or of a candidate
system on which performance estimates must be used, is a
primary design consideration, second only to correctness,
that should be richly supported in the development
environment.

In our system, performance evaluation is being supported at
a number of levels. Analytic models have been developed
that not only predict which stage(s) is(are) a performance
bottleneck, but also provide quantitative assessment of
stage-to-stage queuing requirements (an often ignored
resource that can be critical to overall performance).

Provided simulation models are of two forms. One is a
traditional discrete-event simulation toolset that has been
designed to simplify the model development process for the
pipelined applications of interest. The second is a co-
simulation infrastructure that enables developers to
concurrently execute the general-purpose processor
deployed pipeline stages and simulate (at the RTL level) the
reconfigurable hardware deployed pipeline stages.

Finally, the development infrastructure’s ability to
automatically integrate and deploy application pipelines
onto actual hardware platforms dramatically eases the effort
required to widen the scope of the design space explored
via direct execution and empirical evaluation.

Initial Applications
We are testing our application development environment as
it is being built using a set of real-world pipelined
applications. These applications have been chosen to be
representative of the general class of pipelined applications
of interest and have intentionally been selected from a
diverse group of user communities.

Our first application consists of signal processing tasks
associated with the VERITAS gamma-ray telescope. This
NSF/DOE funded project consists of an array of 12 m
atmospheric Cherenkov telescopes for gamma-ray
astronomy at 50 GeV to 50 TeV energies [3]. The data set
consists of images of Cherenkov light flashes from gamma-
ray initiated electromagnetic showers.

The algorithmic requirements for this application include a
signal processing pipeline that is quite common to many
other applications. Our initial pipeline stages include an
FFT, a low-pass filter, a matched filter, all followed by an
IFFT. These computations are applied to the time series
signal from each image pixel. Following this, the resulting
individual pixel signals are aggregated and pattern detection
is performed searching for signature images.

The second application in the set is 3DES encryption. The
3DES application is a pipeline that consists of 3 copies of

the Data Encryption Standard (DES) kernel [4]. In addition
to the macro-level pipelining just described, the kernel itself
consists of a series of computation stages that can be
pipelined.

The third application in the set is the HMMER program for
protein sequence analysis using profile hidden Markov
models. Here, the primary computation is in the form of a
dynamic programming problem [5].

The final application is also from the field of
biocomputation. BLAST, the Basic Local Alignment
Search Tool [6], is the most widely used software for
rapidly comparing a query sequence to a biosequence
database. As shown in Figure 2, BLAST is functionally
organized as a pipeline with three stages: word matching,
ungapped extension, and gapped extension. The inputs to
this pipeline are a query sequence and a sequence database.
Each stage of BLAST’s pipeline implements progressively
more sophisticated and more expensive computations to
identify biologically meaningful similarities between query
and database.

Figure 2: The BLAST application pipeline

Conclusions
We describe an application development environment for
pipelined hybrid systems with an emphasis on making
performance evaluation a primary design consideration.
The development environment supports a number of
computational platforms, including general-purpose
processors, chip multiprocessors, and reconfigurable logic.
The development environment is being tested using a set of
real-world, production applications.

References
[1] R. D. Chamberlain, R. K. Cytron, M. A. Franklin, and R. S.

Indeck, “The Mercury System: Exploiting Truly Fast
Hardware for Data Search,” in Proc. of Int’l Workshop on
Storage Network Architecture and Parallel I/Os, September
2003, pp. 65-72.

[2] M. A. Franklin, R. D. Chamberlain, M. Henrichs, B. Shands,
and J. White, “An Architecture for Fast Processing of Large
Unstructured Data Sets,” in Proc. of 22nd Int’l Conf. on
Computer Design, October 2004, pp. 280-287.

[3] T. C. Weekes et al., “VERITAS: the Very Energetic
Radiation Imaging Telescope Array System,” Astroparticle
Physics, 17:221-243, 2002.

[4] ANSI X9.52-1998, Triple Data Encryption Algorithm Modes
of Operation.

[5] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids, Cambridge University Press, 1998.

[6] S. F. Altschul et al., “Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs,”
Nucleic Acids Research, 25:3389-3402, 1997.

In
pu

t S
eq

ue
nc

es

fin
al

si

m
ila

rit
ie

s

Word
Matching

Ungapped
Extension

Gapped
Extension

