
C-Based Hardware Design Platform for a Dynamically Reconfigurable
Processor

Phil Mulholland, IPFlex Inc. (phil@ipflex.com), Keisuke Ide, IPFlex Inc. (ide@ipflex.com), and Tomoyoshi Sato, VP and
CTO, IPFlex Inc. (tomosat@ipflex.com)

C-Based Hardware Design

DAPDNA, a dynamically reconfigurable processor
architecture, and its design tool, DAPDNA-FW, are a
platform that offers C-based hardware design. In an
example of image processing application, C-based compiler
produced the best possible performance for a DAPDNA
processor (166M pixel/s at 4 bytes of CMYK/pixel for
basic 3x3 image filters) without manual optimization.

DAPDNA-2
DAPDNA-2, a processor using the DAPDNA architecture,
contains a 32-bit RISC processor (termed DAP) and a
dynamically reconfigurable two-dimensional matrix of 376
heterogeneous 32-bit processing elements (termed DNA),
as shown in Figure 1. The processing elements (PE) consist
of ALUs, RAMs, delays, counters, and I/O buffers. The
reconfigurable array has four banks of configuration
memory, and can switch among them in one clock cycle.
DAPDNA-2 is fabricated with a 0.11-um standard-cell
CMOS process and contains 12 million gates including 32
16-kB SRAMs. It runs at 166 MHz, performs 28 billion
ALU operations and 9 billion multiplications/s, accesses
64-bit wide DDR-SDRAMs at 21 Gbps, transfers data
through six 32-bit I/O channels (termed Direct I/O) at 32
Gbps, and dissipates a typical 2-3 W with maximum 7 W.
DAPDNA-2 is well suited for stream processing such as
multimedia, network, and cryptography.

Figure 1: DAPDNA-2 Processor Block Diagram

DAPDNA-FW II
DAPDNA-FW II is a design tool for DAPDNA-2 as shown
in Figure 2. Its major components include a compiler for a
C-like language (Data Flow C, jointly developed by
Celoxica of the UK) and a graphical design tool (DNA
Designer), in which data streams are created by connecting
PEs and predefined libraries.

Figure 2: DAPDNA-FW II Overview

DFC Compiler
Data Flow C (DFC) is a variation of the C programming
language designed for data flow processing architectures. It
is largely based on ANSI C and Handel C. By using DFC,
the user can directly control the algorithm translation onto
the DAPDNA-2 hardware. Trade-offs and alternative
translations can be quickly developed and evaluated by re-
writing sections of the DFC code. The level of abstraction
between DFC and the data flow hardware is much like the
abstraction between C and a conventional DSP, and allows
the user a great deal of control on the processing resource
usage. Compiler overhead is kept minimal; in general,
overhead affects only resource usage and not performance.

The DFC compiler translates C features directly to
hardware features: e.g., a "for" loop translates to a set of
counters, while external array reads or writes translate to
streaming data sources or sinks. The translation is not
always one-to-one, as some statements are sensitive to their
context, but the translation is always predictable and
consistent. DFC adds new constructs for hardware features
that do not translate directly to the C language. For
example, an array can be declared that acts like a tapped
delay FIFO buffer. Other hardware features are available
through a simple function call interface, such as a
hardware-implemented bit reverse operation. DFC adopts a
basic timing model, making the resulting hardware
performance completely predictable.

The output of the DFC compiler is a function that DAP
calls, like any other C function. This function, however, is
executed on DNA, resulting in the corresponding high

performance. The DFC compiler achieves this in the
following steps: 1. P&R the DFC code onto DNA, 2. create
a C wrapper function which configures DNA and executes
the algorithm within DAP’s C code.

As an alternative, the DFC compiler can produce logical
netlists instead of physical configurations. This logical
configuration can be optimized and P&Red using DNA
Designer. In the final stage of implementation, the DFC
compiler can be used to create a C wrapper function for the
modified configuration and the original DFC function.

DNA Designer
DNA Designer is a graphical design tool and cycle accurate
simulator.

DNA Designer allows various PEs to be directly
instantiated and then programmed via a set of parameter
values. In addition, the user can use pre-designed or create
his own parameterized and reusable macro blocks. All
blocks can be freely placed and connected with drag-and-
drop operation. This model-based development style would
be familiar to Mathworks’ Simulink tool users. (It should
be noted a DNA Blockset is also available to provide the
same DAPDNA development capabilities for Simulink.)
Through the use of pre-programmed library macros,
combined with custom design when necessary, the full
performance of the DAPDNA architecture is extracted in an
easily repeatable fashion.

All of the unique features of DNA are available for design
and simulation, including the use of dynamic
reconfiguration and Direct I/O. Using dynamic
reconfiguration, the user can time-partition an application to
reuse the same hardware resources. DNA Designer
allows these configurations to be selected or sequenced
using a switch/case metaphor. Using the Direct I/O, an
application can be partitioned across multiple chips, or
connected to external data sources and sinks.

Performance Figures
In an example of image processing applications, DAPDNA-
2 processes 3 bytes of RGB data or 4 bytes of CMYK data
per clock (equivalent to 667M monochrome pixel/s) in
basic 3x3 image filters. The result was measured for
800x600 24 bit RGB images, with input/output frames
stored in external DDR-SDRAM memory. Filter
parameters do not affect the performance, and a 3x3 Mean
filter, 3x3 Laplacian filters and 3x3 binary edge filters all
give the same result. DNA processes the data as follows:
an input data stream gained from external memory,
followed by a series of line buffers, tapped delays, multiply
operations, and a final summation followed by an output
stream to external memory. All operations are pipelined
and the 3x3 pixel operations are parallelized, resulting in a
one-pixel-per-clock process. Such image filters can be
designed graphically using DNA Designer and specific
image processing library macros, or programmatically with
DFC.

Figure 3: Data Flow C Source Code for a 3x3 Mean Filter

Figure 4: Output of DFC Compiler (Logical View)

Figure 5: Output of DFC Compiler (Physical View)

Image filters described above produced similar result in
DFC compiler and in DNA Designer. However, more
complicated applications, e.g. motion estimation in video
encoding, may benefit from optimization in DNA Designer.
Typically, the user would develop in DFC first, and then
optimized using DNA Designer to achieve better resource
usage.

